ITEM No. 9 FILE No. XXVI-46

> STEREOPHON SOUND RECORDING SYSTEM DEVELOPED BY DR. CARLHEINZ BECKER

> "This report is issued with the warning that, if the subject matter should be protected by British Patents or Patent applications, this publication cannot be held to give any protection against action for infringement."

COMBINED INTILLIGENCE OBJECTIVES
SUB-COMMITTEE

Stereophon Sound Recording System Developed by Dr. CARLHEINZ BECKER

Reported by

Lieut. H. B. LEE, III, USNR Naval Technical Mission in Europe

CIOS Target Number 9/357
Physical & Optical Instruments & Devices

July 1945

COMBINED INTELLIGENCE OBJECTIVES 3UB-COMMITTEE G-2 Division, SHAEF (Rear) APO 413

TABLE OF CONTENTS

		Page
1.	Introduction	3
2.	Description	3

YRAMMUE

This report describes a system intended primarily for high quality sound recording on film. It was privately developed by a German physicist, Dr. Carlheing Becker, of Thansau uber Rosenheim. The system employs well-known means in some respects, but has the important advantage of giving excellent 3-channel reproduction of great dynamic range and low noise level using a sound track of total width of only 2.65 millimeters.

STEREOPHON SOUND RECORDING SYSTEM

1. Introduction.

- (a) The system described here was developed by Dr. Carlheinz Becker of Thansau uber Rosenheim, Germany. Dr. Becker is a capable German physicist who started development of the system in 1938. He worked without government interference until 1942 when he was ordered to convert it to an explosion power recorder for which it is well suited in many respects. In 1944, work on the recorder was stopped and Dr. Becker was put to making high veltage regulated power supplies for laboratory use. Several of these were delivered. These are of excellent quality but represent no advance over our own designs.
- (b) Dr. Becker, as do most Germans now, professes to be willing to undertake development work for the Allies. It should be said that he and his staff (about 10 or 12 men) are thoroughly competent. They have a small but very well equipped laboratory and machine shop. Both are undamaged, have power available, and could start work at once.

2. Description.

(a) The system is termed the "STEREOPHON" system and has for its purpose very high fidelity reproduction of sound utilizing a film sound track 2. 65 millimeters in width. Truly faithful sound reproduction requires not only distortionless rendition of frequency and amplitude, but also a means for creating a lifelike illusion of auditory depth. This latter can be achieved by emplaying several microphones during the recording and a like number of properly placed loudspeakers for reproduction. The result is to give to the ears a stereophonic impression. The improvement, in this respect, of two microphones and speakers ever one is very great. The additional imprevement of three (3) ever two (2) is not as great and the improvement of four (4) over three (3) is still less. For this reason, and an adultional one, the system empleys three (3) independent channels. The additional reason is that a simple channel requires a film sound track of .7 millimeters and three (3) channels require a track 2.65 millimeters

2. Description (a)(Cont'd)

- wide. Four (4) channels would require a track of approximately 3.43 millimeters which cannot be accommodated on standard film. The gain of a fourth channel does not justify the additional equipment needed.
- (b) A schematic diagram of the electrical portion of the system is shown in Figure 1. The output of each microphone is fed to a low frequency amplifier capable of accurately passing frequencies from 23 to 10,000 cycles. From each such amplifier, the signal passes to a pair of oppositely connected diodes which split the signal into plus and minus components. This system of half wave recording is used because it offers a very great advantage in noise reduction. Half wave recording dates back to 1881. When it is employed, the non-modulated positive sound track is completely dark without resort to "noiseless" equipment and the amplitude of film noise is almost zero. Each half wave signal is then amplified in conventional manner by stages having a band-width of 20 kilocycles because of the harmonics introduced by the phase split.
- (c) Actual modulation of the light beam that is impressed on the film takes place in a Kerr Cell. The characteristics of the solution used in this cell (nitro benzene) are such that excessive electrolysis would occur if it were operated by the half wave intelligence frequencies. To avoid this, it is necessary to operate the cell by a higher frequency signal modulated by the half wave intelligence frequencies. Accordingly, a single oscillator stage provides a 170 kilocycle signal to each of six (6) mixer of modulator stages where the 170 kilocycle signal and modulated by the six (6) half wave intelligence bands. Adjustable gain 170 kilocycle amplifiers are provided so that the modulation can be properly controlled. The output of each mixer stage is passed through a band pass filter to eliminate undesired modulation products, and is fed to one (1) plate of the Kerr Cell, which cell serves to wed the electrical and optical systems.
- (d) A schematic diagram of the optical system is given in Figure 2. The light source is a high pressure mercury lamp giving monochromatic light which is passed through a convex lens to the first of a pair of Nicol prisms. Between the Nicol prisms is the Kerr Cell. In traversing the first Nicol prism, the light

38054-1 K

2. Description (d) (Cent'd)

is plane pelarized and, if ne signal were applied to the Kerr Cell, would be completely cut off by the pelarizing effect of the second prism. The Kerr Cell, however, has the preperty of altering the pelarization of light traversing it in accordance with an applied signal. Due to this property, light is passed by the second Nicel prism in an amount that varies with the impressed signal. After leaving the second Nicel prism, the modulated light is focused on the moving negative film by a pair of lenses and the signal is thum recorded.

- (e) The film drive system is worthy of mention because the possibility of uneven metion, due to film sprockets, is eliminated. Two (2) separate synchronous meter drives are used. One drives the film wind and unwind sprockets and the other drives a transparent wheel ever which the film passes to receive the medulated light. Two (2) rubber idlers keep the film up against this latter wheel and insure that there is no sprocket effect at this point. The effect of the wind and unwind sprockets is insulated by loops of film between these sprockets and the transparent wheel. The speed of the transparent wheel can be varied mechanically using a variable ratio drive so that the proper amount of looping can be obtained.
 - (f) Essential data on the recorder are:

Signal Frequency Rage - 23 to 10,000 sycles.

Dynamic Range - 60db without resert to expansion and compression.

Distortion - Less than 3% ever the whole dynamic range.

Film Neise - 70 db belew greatest amplitude.

Film Velocity - 45 cm/sec.

Sound Track Width - 2.65 mm.

Prepared by:

H. B. LEK, III Lieut, USNR

3054-1K

Cent'd)

pelarised and, if no signal were applied to the Kerricki would be completely cut off by the pelarizing effect of would prise. The Kerr Cell, however, has the preparty of the pelarisation of light traversing it in accordance applied eignal. Due to this property, light is passed accord Micel prise in an amount that varies with the instantant. After leaving the second Nicel prise, the neural light is focused on the moving negative film by a pair of the signal is thus recorded.

(a) The film drive system is worthy of mention because the static of uneven metion, due to film sprockets, is climinated. We construct anyochronous meter drives are used. One drives that wind and unwind sprockets and the other drives a transmission of the system which the film passes to receive the medulated like. Two (2) rubber idlers keep the film up against this later wheel and insure that there is no sprocket effect at this the effect of the wind and unwind sprockets is insulated as af film between these sprockets and the transparent wheel are a writing a trible ratio drive so that the proper amount of looping the obtained.

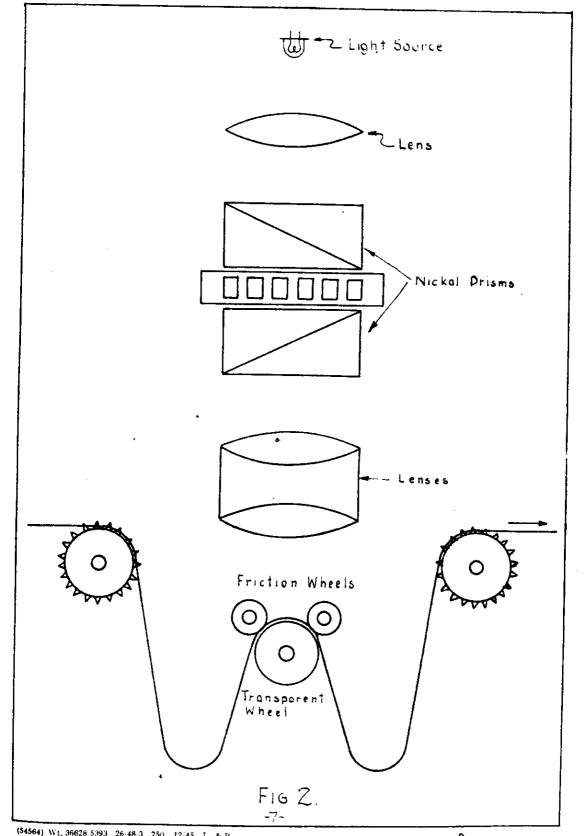
(2) Essential data on the recorder are:

Signal Frequency Rage - 23 to 10,000 cycles.

Dynamic Range - 60db without resert to expansion and compression.

Distertion - Less than 3% ever the whele dynamic range.

Film Neise - 70 db below greatest amplitude.


File Velocity - 45 cm/sec.

Sound Track Width - 2.65 mm.

Prepared by:

H. B. LEK, III Lieut, USAR

(54564) Wt. 36628 5393 26 48 3 750 12/45 L. & B.

transparent wheel?