7. Ueber die Verteilung
der Energie wwischen Aether und Materie;

tvon Max Planck.

(Aus dem Jubelband fiir J. Bosscha, Arch. Néerl. p. 55. 1901,
mitgeteilt vom Verf.}

AN

Vor kurzerm habe ich aus der Theorie der elektromagne-
tischen Strahlung eine Beziehung abgeleitet, welche das absolute
Gewicht eines ponderabeln Moleciiles, sowie auch die absolute
elektrische Ladung eines Ions oder Elektrons mit derselben
Genaunigkeit zu berechnen gestattet, mit welcher die univer-
sellen Constanten der Wirmestrahlung eines schwarzen Korpers
gemessen sind.!) Der physikalische Sinn dieser Beziehung
besteht kurz gesagt in der Angabe eines allgemeinen Gesetzes,
welches die Verteilung der Energie im stationiren Zustand
zwischen Aether und Materie regelt. Dass fiberhaupt in einem
mit elektromagnetischer und mechanischer Energie ausge-
statteten, nach aussen vollstéindig abgeschlossenen System im
Laufe der Zeit eine ganz bestimmte Energieverteilung eintreten
muss, folgt unmittelbar aus dem zweiten Hauptsatz der Thermo-
dynamik, unabhingig von jeder speciellen Annahme dber die
Finzelheiten der’ Bewegungs- und der Strahlungsvorginge.
Wie man aber das Gesetz dieser stationiiren Energieverteilung
wirklich finden kann, dariiber méchte ich im Folgenden, im
Anschluss an meine genannte Arbeit, einige nihere Aus-
fiihrungen machen, wobei es im Interesse einer zusammen-
hﬁ,ngenden'Darstellung gestattet sein mbge, manches schon
Bekannte zu wiederholen. ,

Eins der wichtigsten Mittel zum tieferen Eindringen in
die Figentiimlichkeiten physikalischer und chemischer Vorginge

1) M. Planeck, Apn. d. Phys. 4 p. 564, 1901.
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von der theoretischen Seite her beruht auf einer gewissen Er-
Weitezung bez. Verallgemeinerung der Bedingungen,- welche
wir ‘als charakteristisch fiir den Zustand eines materiellen
Systems ansehen. Die der wirklichen Beobachtung und Messung
zuginglichen Zustinde reprisentiren nach dieser Auffassung
nur ganz specielle, durch besondere Eigenschaften ausgezeich-
nete Kélle unter viel zahlreicheren und viel allgemeineren Zu-
stinden, die in der Natur von vornherein ebensogut méglich
sind, die sich aber der Beobachtung nicht, oder nicht so leicht,
darbieten. Schon die reine Thermodynamik bietet Beispiele
genug von solchen Zustinden, die man dort als ,labil“ oder
stheoretisch® zu bezeichnen pflegt. Nehmen wir irgend ein
chemisch vollkommen definirtes ruhendes Gas 'von gleich-
missiger Dichte und Temperatur, so wird der Zustand in der
Regel durch Masse, Volumen und Temperatur als bestimmt
anzunehmen sein. Aber in manchen Fillen ist es vorteilhaft,
den Begriff des Zustandes noch allgemeiner zu fassen. Wenn
z. B. das Gas teilweise DisSocia.tion erleidet, wie Stickstoff-
superoxyd N,O,, welches sich in zwei Molecule NO, spaltet,
so ist der Zustand, soweit er sich der :Messung darh;etet
immer noch vollkommen bestimmt durch Masse, Volumen und
Temperatur, aber dennoch betrachtet man in der Theorie.ausser
diesem Zustand, dem thermodynamischen Glelchgewzchtszustand
noch ganz. andere viel allgemeinere Zustande, namlich solche,
welche bei gegebener Masse, Volumen und Temperatur des
“Gases noch einen ganz willkiirlich gewshlter Dissociationsgrad
aufweisen, obwohl dieselben direet gar micht zu beobachten
sind. In jedem dieser theoretischen Zustinde ist’ der Druck
des Gases durch das Volumen, die Temperatur und den Disso-
‘ciationsgrad nach dem Dalton’schen und dem Avogadro’-
schen Satze bestimmt, und der Gleichgewichtszustand, ent-
sprechend einem bestimmten Dissociationsgrad und einem be-
stimmten Druck, geht aus ihnen erst durch eine weitere
besondere Bedingung, n#mlich durch 'die des Minimums der
freien Energie hervor. Der Vorteil dieser Betrachtungsweise
beruht darauf, dass man auf diesem Wege zu einem nume-
rischen, mit der Erfahrung vergleichbaren Gesetz fiir die Ab-
hingigkeit des Druckes und des Dissociationsgrades von der
Dichte und der Temperatur gelangt.
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7Zu den beschrichenen rein theoretischen Zustinden ge-
horen unter arderem auch diejenigen, welche entstehen, wenn
man eine Lidsung: fest, flissig oder gasformig, durch passende
Erwirmung und Volumenvergrdsserung ohne jede chemische
Vertinderung in den idealen (Gaszustand fibergehen lHsst,
welchen Process ich frither benutzt habe, um den vollstdndigen
Ausdruck der Entropie und damit die thermodynamischen
Eigenschaften einer verdiinnten Losung herzuleiten.?)

Noch weiter in der bezeichneten Richtung gebt die kine-
tische Theorie der Gase, auf die ich jetzt niher eingehen
mbchte, cbwohl das Wesentliche der folgenden Bemerkungen
durch die Forschungen von L. Boltzmann schon seit langer
Zeit bekannt ist.?) Der Zustand eines bestimmten aus ein-
fachen Atomen bestehenden, in einem bestimmten Raum ein-
geschlossenen Gasquantums ist nach der kinetischen Theorie
noch nicht bestimmt durch die gesamte ihm mitgeteilte kine-
tische Energie, sondern erst durch die vollstindige Kenntnis
der Raum- umd der Geschwindigkeitsverteilung, d. h. durch
die Angabe der Zahl der Atome, deren Coordinaten und Ge-

. schwindigkeitscomponenten je zwischen zwei bestimmten Grenzen

liegen. Fiir den der Beobachtung zuginglichen stationfiren
Zustand besteht allerdings nur eine ganz bestimmte Raum-
verteilung, namlich die gleichméssige, und eine ganz bestimmte
Geschwindigkeitsverteilang, n#mlich die Maxwell’sche, aber
im allgemeinen kann man das Verteilungsgesetz, sowohl in
Bezug auf den Raum als auch in Bezug auf die Geschwindig-
keit, ganzlich willkiirlich annehmen, und erst wenn dieses Ge-
setz gegeben ist, - darf man den Zustand des Gases als voll-
kommen bestimmt ansehen, Jedem solchen beliebig gegebenen

- Zustand entspricht eine bestimmte Entropie, und das Maximum

der Entropie liefert nach dem zweiten Hauptsatz der Thermo-
dynamik die Bedingungen des stationiren Zustandes. Daher
kommt fir die Auffindung des letzteren alles darauf an, den
allgemeinen Ausdruck der Entropie des Gases fiir irgend einen
Zustand desselben’zu kennen,

}) M. Planck, Wied. Ann. 82. p. 488. 1887.
%) L. Boltzmann, hauptsichlich Sitzungsber. d. k. Akad. a. Wiss.
2u Wien (I1) 76. p. 373. 18%7.
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Es giebt nun, wie Boltzmann gezeigt hat, einen ein.
fachen Satz, der fiir jeden beliebig gegebenen Zustand des
(Gases, d. h. fiir jedes beliebig gegebene Gesetz der Raum-
und der Geschwindigkeitsverteilung die Entropie zu berechnen
gestattet, und der daher im Grunde als eine Erweiterung der
Definition der Entropie iber das Gebiet der reinen Thermo-
dynamik hinaus in das der kinetischen (Rastheorie anzusehen
ist. Bedenkt man n#mlich, dass von vornherein genommen
jedes einzelne Atom des Gases jeden beliebigen Ort imnerhalh
des gegebenen Volumens einzunehmen und jede beliebige Ge.
schwindigkeit nach jeder beliebigen Richtung zu Wesitzen ver-
mag, so erhellt, dass ein bestimmtes, willkiirlich vorgeschrie-
benes Verteilungsgesetz der Atome im allgemeinen auf un-
geheuer verschiedene Weise zu stande kommen kann, je nach-
dem ein einzelnes ins Auge gefasstes Atom diesem oder jenem
Raum- und Geschwindigkeitsintervall angehort. Man denke
sich das ganze Raumgebiet (Volumen des Gases) und da,s ganze
Geschwindigkeitsgebiet (fiir jede der drei Geschwmdlgkelts-
componenten das Intervall von — ¢o bis + co)Y) in lauter
gleiche kleine Teile zerlegt; dann bildet die' Combination je
eines Tripels der dreifach vielen Raumelemente mijt je einem
Tripel der dreifach vielen Geschwindigkeitselemente ein ,Ele-
mentargebiet” des Raumes und der Geschwindigkeit, und das
gesamte Verteilungsgesetz, mithin der Zustand des Gases, ist
charakterisirt durch die Angabe der Zahl der Atome, welche
auf jedes der vorhandenen Eiementargebiete entfallen. Nennt
man eine specielle Verteilung, bei welcher jedem einzelnen
Atome ein ganz bestimmtes Elementargebiet zugeordnet ist,
eine ,,Complexion®, so umfasst der durch das vorgeschriebene
Verteilungsgesetz bestimmte Zustand des Gases 1m allgemeinen
eine sehr grosse, aber bestimmt angebbare Anzahl & von ver-
schiedenen Complexionen. Die Entropie § des (Gases in einem
beliebig gegebenen Zustand ist nun nach dem Boltzmann’-
schen Satze bis auf eine willkiirlich zu wihlende additive
Constante proportional dem natiirlichen Logaritbmus der

1) Streng genommen sind die Grenzen des Geschwindigkeitsgebictes
nicht unendlich, sondern durch den vorgeschriebenen Wert der Energie
des Gases beschriinkt.



Verteilung der Energie zwischen dether und Materie. 633

Zahl 3 der diesem Zustand entsprechenden verschiedenen Com-
plexionen: '

§ = klog P + counst.

Die Proportionalititsconstante  hingt von der Kinheit ab,
mit welcher man die Temperatur misst. Wiirde man die Tem-
peratur eines (Gases direct gleich der mittleren Energie eines
Atoms setzen, so wire 2 = 2. Da aber die Einheit der Tem-
peratur durch die conventioneile Festsetzung geregelt ist, dass
der Abstand des Siedepunktes vom Gefrierpunkt fir Wasser
gleich 100, so ist die Constante % von der Dimension einer
Energie dividirt durch eine Temperatur,

Um den angefiihrten Satz noch in etwas anderer Weise,
als es Boltzmann gethan hat, zu illustriren, berechnen wir
als Beispiel die Entropie eines Gases fiir einen fingirten Fali.
Es seien zehn Atome vorhanden und sieben Elementargebiete
des Raumes und der Geschwindigkeit. Das den Zustand des
(Grases bestimmende Verteilungsgesetz sei nun derart gegeben,
dass von den~zehn Atomen

~
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Dann ist zuniichst die Zahl ® der verschiedenen Com-
plexionen zu bérechnen, welche das gegebene Verteilungsgesetz
liefern. Jede einzelne Complexion lisst sich offenbar in folgen»
der Weise durch ein Ziffernbild versinnlichen. Wir bezeichnen
die einzelnen Atome mit den Ziffern 1—10, und schreiben
diese Ziffern der Reihe nach nebeneinander, Um nun eine
bestimmte Complexion auszudriicken, setzen wir unter jede
Atomziffer die Nummer desjenigen Elementargebietes, welchem
das betreffende Atom bei dieser Complexion angehirt, also z. B.
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Hier kommt die Nummer 1 einmal, die Nummer 2 zwei-
mal, die Nummer 3 und 4 keinmal, die Nummer 5. einmal,
die Nummer 6 viermal und die Nummer 7 zweimal vor, gerade
wie es im Verteilungsgesetz vorgeschrieben ist. Jede Com.
plexion besitzt, wie man sieht, ibhr besonderes Ziffernbild, und
die Anzahl aller moglichen verschiedenen Complexionen ist
daher gleich dervAnzahl aller moglichen verschiedenen Ziffern-
bilder, d. h. gleich der Zahl der Permutationen von zehn Ele-
menten, unter denen vier von einer Art, zwei von einer anderen
Art, und zwei von einer dritten Art einander gleich 8ind. Also:

\ 10!
SJ$=1!2!050!1!4=!2:

== 37 800.
Daher ist die Entropie des Gases in dem gegebenen Zu-
stand: :
§ = klog 37800 + const. « - -~

Nach dem Schema dieser Berechnung lisst sich leicht der
allgemeine Ausdruck fir die Entropie eines aus N Atomen
bestehenden Gases in einem beliebig gegebenen Zustand ab-
leiten. Sei die Zahl der Atome, deren Coordipaten und Ge-
“schwindigkeitscomponenten zwischen den Werten:

zund 2 +dz, yund y +dy, zund z+dz,
§ w §+dE 1 5 n4dr, £, £+4d§
liegen, gegeben durch den Ausdruck:

@y, 280 8dxdydzdEdydl,
wobel
dedydzdfidydi=do

die Griosse eines Elementargebietes der Coordinaten und Ge-
schwindigkeiten bezeichnet, so ist durch die Function / der
Zustand des Gases bestimmt. Die Anzahl der mioglichen ver-
schiedenen Complexionen ist dann, wie oben:

: N

P = Ty 8 adat
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wobei das Zeichen I7 das Product itber alle Elementargebiete do
bedeutet. Die Entropie des (ases ergiebt sich ‘dabei, unter
besonderer Beriicksichtigung des Umstandes, dass in einem
Elementargebiete sich immer noch viele Atome befinden und
dass alle Hlementargebiete gleich gross sind, zn:%)

8§ = Llog R + const.,

S=const.-——-kff.logf.d0'.

Zur Priiffung der allgemeinen Zuldssigkeit dieses Aus-
druckes und zugleich zur Bestimmung ‘der Constanten & dient
die Berechnung von § fiir den stationdren Zustand des Gases
und Identificirung dieser Grisse mit der aus der Thermo-
dynamik bekannten Clausius’schen Entropie.

Das Gesetz der stationiren Raum- und Geschwindigkeits-
verteilung wird durch diejenige Function f ausgedriickt, welche
die Entropie § bei gegebener Atomzahi:

N=ffda,

gegebenenr™ Gesamtvolumen /7 ,' und gegebener Gesamtenergie:

=@t
(m Masse eines Atomes) zu einem- Maximum macht. Diese

Bedingung ergiebt nach den Regeln der Variationsrechnung:

[= o.e= FE T,

‘Wobei wegen der gegebenen Werte von N, 7 und U:

. N (8w N\
¢ 2 N A
. 3m N
. ;9 = ’QT'* 1

und daraus folgt der Maximalwert von §: 7

§ = const, + & N(3log U"+ log F).

1) L. Boltzmann, Vorlesungen iiber Gastheorie 1. p. 42. 15986,
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Nun ist andererseits die thermodynamisch definirte Entropie
eines im Gleichgewichtszustand befindlichen, aus n g-Atomen
- bestehenden Gases vom Volumen 7 und der Temperatur 3

§ = const. + n(c,log & + Rlog 7).

E bedeutet die sogenannte absolute Gasconstante (8,381,107
fiir O =16), ¢, die Warmecapacitit eines g-Atomes bei con-
stantem Volumen im mechanischen Maasse. Da nun erstens
& proportional U, und zweitens bei einatomigen Gasen:

¢, =38:2,

so findet absolute Uebereinstimmung zwischen beiden Formeln
fir § statt, wenn gesetzt wird:

nRER=*~%N.

v

Bezeichnen wir also das van der Natur_des Gases unab.
hingige Verhiltnis der Masse eines Atgmes zur Masse des
‘g-Atomes mit w, so ist: '

und der allgemeine Ausdruck fiir die’ Entropie, in mecha-
nischem Maasse, wird:

§=w R log P + const.

Solange w unbekannt ist, lassen sich die beiden Fae-
toren o und log B nicht einzeln berechnen, sondern nur ihr
Product.

Eine besondere Anschaulichkeit gewinnt die Grosse der
Entropie durch die Einfithrung des Begriffes der Wahrschein-
lichkeit. Da namlich die Zahl B aller moglichen verschiedenen
Complexionen, welche einem bestimmten Zustand entsprechen,
zugleich die Wahrscheinlichkeit dieses Zustandes angiebt, so
kann man allgemein sagen, dass die Entropie des Gases in
irgend einem Zustand ein Maass ist fiir die Wahrscheinlich-
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keit dieses Zustandes, und dass der stationdre Zustand durch
den griossten Wert der Wahrscheinlichkeit ausgezeichnet ist.

Gehen wir nun von der kinetischen (Gastheorie zur Theorie
der Wiarmestrahlung tiber, die wir als einen elekfromagne-
tischen Vorgang auffassen, so treffen wir in gewissem Sinn
ganz #hnliche Verhiltnisse an. Auch hier hat es sich fur
die Ableitung des stationdren Strahlungszustandes von Vorteil
erwiesen, zunichst von viel allgemeineren Zustinden auszu-
gehen, die durch ganz beliebige Verteilungen der elektro-
magnetischen Energie charakterisirt sind, sowohl im frei
durchstrahlten Felde (Vacuum) als auch in mitschwingenden,
absorbirenden und emittirenden Resonatoren, deren Schwin-
gungsenergie wir der Einfachheit halber auch mit zur elektro-
magnetischen Energie rechnen wollen. Jedem solchen durch
eine willkiirlich vorgeschriebene Knergieverteilung deﬁmrten
Zustand entspricht eine bestimmte Entropie, und das Maxi-
mum dieser Entropie ergiebt den Zustand der stationéiren,
sogenannten normalen Energieverteilung, wie sie im Spectrum
eines schwarzen Kborpers auftritt. Der allgemeine Ausdruck
der Entropie lisst sich durch ein dem oben geschilderten ganz
dahnliches Wahrscheinlichkeitsverfahren finden. Wir betrachten
im Folgenden nur die Verteilung der Energie auf einzelne,
und zwar lineaye Resonatoren von bestimmter Kigenperiode.
Es seien ¥, N,, N,,... die Zahlen der im ganzen vorhan-
denen Resonatoren _Je mlt der Ewenperlode Py Vgy ¥y, - o sy und
die Energieverteitang unfer ihnen sei in der Art 10rgeschrieben,
dass auf jede einzelne Gattung, d. h. auf die Resonatoren je
einer Eigenperiode, gine nach Willkiir bestimmte Schwingungs-
energie U7, U,, U,, ... entfallt. Dann entspricht der Ver-
teilung der }Lnergle U, auf die N, Resonatoren der ersten
Gattung eine in ganz bestlmmter W eise!) zu berechnende An-
zahl von moglichep Complexionen %R,, ebenso der Verteilung
der Energie U, auf die M, Resonatoren der zweiten Gattung
eine bestimmte Complexionszahl N, etc., sodass, da jede Com-

B —

1) M: Planck, Verhandl. d. Deutsch. physik. Gesellsch. 2. p. 239.
1900 oder Aun. d. Phys. 4. p. 357. 1901.
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plexion innerhalb einer Resonatorgattung mit jeder beliehigey
anderen innerhalb einer anderen Gaftung combinirt werdey
kann, die gesamte vorgeschriebene Energieverteilung auf

RoW, R =R

verschiedene Arten zu stande kommen kann. .

Auch higr hat sich nun wieder der Satz als giltig er.
wiesen, dass in jedem Falle die Entropie des durch die vor.
geschriebene Energieverteilung definirten Zustandes- bis auf
eine willkiirliche additive Constante proportional ist ‘dem natiy.
lichen Liogarithmus der dem Zustand entsprechen,den Gesamt-
zahl von Complexionen: s

§ = klog® + const., -
wobei ’ - s

Erg
- =18 s .
k= 1,346.10 Grad

Daher giebt auch hier die Kntropie durch ibre Grisse
ein Maass fir die Wahrscheinlichkeit irgend einer beliebig
vorgenommenen Verteilung, und der Zustand der stationfiren
Verteilung ist unter allen anderen durch die grosste Wahr-
scheinlichkeit ausgezeichnet,

Nachdem wir nun einerseits die Vertéilung der mecha-
nischen Energie zwischen bewegten Atomen, andererseits die
Verteilung der elektromagnetischen Knergie zwischen schwingen-
den Resonatoren erdrtert haben, wenden wir uns nunmehr
schliesslich zu der Frage nach der stationiren Verteilung der
Energie in einem System, welches sowohl mechanisch bewegte
Atome, als anch elektromagnetisch schwingende Resonatoren
enthilt?), und kehren somit zuriick zu dem im Titel dieser Ab-
handlung bezeichneten Problem der Energieverteilung zwischen
Aether und Materie. Es frigt sich also, welcher Bruchteil
der gesamten KEnergie eines nach aussen vollstindig abge-
schlossenen Systems in dem vom zweiten Hauptsatz der

1) Die Frage, ob die Resonatoren mit den Atomen identisck sind,
kann hier ganz offen bleiben.
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Wirmetheorie geforderten stationdiren Endzustand als mecha-
nische Energie im Sinne der kinetischen Gastheorie, welcher
Bruchteil als elektromagnetische Energie im Sinne der elektro-
magnetischen Strahlungstheorie auftritt.

Selbstverstindlich konnen wir auch hier wieder zunichst
von einer ganz beliebigen Verteilung ausgehen. Jedem Zu-
stand, welcher durch eine willkiirlich vorgeschriebene Raum-
nd Geschwindigkeitsverteilung zwischen den Afomen und
Energieverteilung zwischen den Resonatoren bestimmt ist, wird
eine ganz bestimmte Gesamtentropie entsprechen, und diese
Gesamtentropie wird gegehen sein durch die Summe:

8= m Rlog®P + klog R + const.,

wobel der erste Summand die oben behandelte mechanische
Entrepie, der zweite die elektromagnetische Entropie vorstellt,
welche Grossen beide nach Maassgabe der oben gemachten
Auseinandersetzungen in ganz bestimmter Weise durch Zahlung
der entsprechenden Complexionen zu berechnen sind, da ja
der Verteilungszustand als vollstindig bekannt angenommen
ist. Nach dem zweiten Hauptsatz der Warmetheorie wird
dann unter allen bei einer bestimmten Gesamtenergie des
Systems iiberhaupt moglichen Zustinden der stationire Zustand
durch das Maximum von § ausgezeichnet sein.

Nun haben wir oben- gesehen, dass die mechanische En-
tropie dimes Gases in irgend einem Zustand ganz allgemein
ein Maass der, Wahrscheinlichkeit dieses Zustandes darstellt,
ferner dass genau dasselbe gilt fir die elektromagnetische
Entropie eines Systems von Resonatoren. Da ist die Folgerung
nicht abziweisen, dass diese beiden an sich schon sehr all-
gemeinen, in zwei ganz verschiedenen Gebieten der Physik
genau in’ gleicher Weise wiederkehrenden Beziehungen zwischen
Entropie und Wahrscheinlichkeit einen gemeinsamen Ursprung
haben, und dieser kann nur in folgendem vollstiindig allgemeinen
Satze liegen: ' :

Die .E’nh;opz'e eines Systems in irgend einem Zustand hingt
nur - ab von der Wakrscheinlichheit dieses Zustandes.

Dann  wiirde zugleich auch der zweite Hauptsatz der
Thermedynamﬂr, der Satz der Vermehrung der Entropie,
welcher Ja auch nicht-bloss fir rubende und strahlende Warme
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einzeln, sondern ebenso fiir die Wechselwirkungen beider Vor-
giinge gilt, in jedem Falle eine direct anschauliche Bedeutung
bekommen, indem dann der thermodynamische Gleichgewichts.
zustand jedes Systems immer zugleich auch der wahrschein-
lichste Zustand desselben ist. Nimmt man aber diesen. Satz
als richtig an — und ohne ihn darfte meiner Meinung nach
der Zusammenhang zwischen Entropie und Wahrschemhchken
itberhaupt nicht aufrecht zu erhalten sein — so folgt dass der
‘Wert von § nur von dem Product der Complexmnen B.x
abhingen kann; denn da nach der elektromagnetischerxTheorie
der Strahlung die miechanischen und die-elektromagnetischen
Complexionen ganz unabhiingig voneinander sind, so ist die
Wahrscheinlichkeit des zusammengesetzten Zustandes gleich
dem Product der Wahrscheinlichkeiten der einzelnen Zustinde.
Ks muss also gelten:

w =k,
Dann Ist: .
8 = klog (B N) 4 const.

und der aus der Wirmedtrahlung berechnete, oben angegebene
Wert von & gilt volilstindig allgemein fir die Definition der
Entropie aus der Wahrscheinlichkeit, auch in der kinetischen
Gastheorie. Die am Anfang aufgeworfene Frage nach der
- Verteilung der Energie zwischen Aether und Materie beant-
wortet sich dann dahin, dass diejenige Verteilung die stabile
ist, welche die grosste Anzahl von Complexionen, mechanische
und elekiromagnetische zusammen genommen, zulisst. Die
Verallgemeinerung dieses Resultates auf mehratomige Mole-
ciile, sowie auf die Strahlung im freien Aether und auf
complicirter gebaute Resonatoren diirfte keine principiellen
Schwierigkeiten mehr bieten, wenn auch die praktische Durch-
fihrung zum Teil noch unthunlich sein wird.

Aus der letzten Gleichung folgt:

_k _ 1,846.10-16 o
©=F= Tgaiaor — 02107,

d. h. die Masse eines Atomes oder Molecitles ist das
1,62.10-*#fache der Masse des g-Atomes oder g-Moleciiles.
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Das Elementarquantum der Elekiricitat, d. h. die elek-
trische Ladung eines einwertigen Ions, ergiebt sich hieraus,
elektrostatisch gemessen, zu:

e=1,62.10-2¢,9654.3.10%° = 4,69.10~-10,

Jede Verbesserung des Wertes der Strahlungsconstanten
wird nach dieser Theorie immer zugleich auch eine verfeinerte
Messung des absoluten Gewichtes der Atome und der absoluten
Grosse des elektrischen Hlementarquantums darstellen.

(Eingegangen 20. Juli 1902.}



