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6. Kinetische Theorie des Wdrmegleichgewichites
und des zweiten Hauptsaizes der Thermodynamilk;
von A. Einstein.

So gross die Krrungenschaften der kinetischen Theorie
der Wirme auf dem Gebiete der Gastheorie gewesen sind, so
ist doch Dbis jetzt die Mechanik nicht im stande gewesen, eine
hinreichende Grundlage fir die allgemeine Warmetheorie zu
liefern, weil es bis jetzt nicht gelungen ist, die Satze iiber
das Wiarmegleichgewicht und den zweiten Hauptsatz unter
alleiniger Benutzung der mechanischen (leichungen und der
Wahrscheinlichkeitsrechnung herzuleiten, obwohl Maxwell’s
und Boltzmann’s Theorien diesem Ziele bereits nahe ge-
kommen sind. Zweck der nachfolgenden Betrachtung ist es,
diese Liicke auszufilllen, Dabei wird sich gleichzeitig eine
Yrweiterung des zweiten Hauptsatzes ergeben, welche fiir die
Auwendung der Thermodynamik von Wichtigkeit ist. Ferner
wird sich der mathematische Ausdruck fur die Entropis vom
mechanischen Standpunkt aus ergeben.

§ 1. Mechanisches Bild flir ein physikalisches System.

Wir denken uns ein beliebiges physikalisches System dar-
stellbar durch ein mechanisches System, dessen Zustand durch

sehr viele Coordinaten p;,...p, und die dazun gehobrigen Ge-
schwindighkeiten

19, 4 pn
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eindeutig bestimmt sei. Die Energie £ derselben bestehe aus
zwei Summanden, der potentiellen Energie 7 und der lebendigen
Kraft 7. Erstere sei eine Function der Coordinaten allein,
letztere eine quadratische Function der

ap, :

g T h:
deren Coefficienten beliebige Function der p sind. Auf die
Massen des Systems sollen zweierlei Zussere Krifte wirken,
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Die einen seien von einem Potentiale 7 ableitbar und sellen
die #usseren Bedingungen (Schwerkraft, Wirkung von festen
Winden ohne thermische Wirkung ete.) darstellen; ihr Potentia)
kann die Zeit explicite enthalten, doch soll seine Ableitung
nach derselben sehr klein sein. Die anderen Krifte selen
nicht von einem Potential ableitbar und seien schnell ver.
anderlich. Sie sind als diejenigen Kriifte aufaufassen, welche
die Warmezufuhr bewirken. Wirken solche Krifte nicht, isg
aber 7, explicite von der Zeit abhéngig, so haben wir einen
adiabatischen Process vor uns.

Wir werden auch statt der Geschwindigkeiten, lineare
Functionen derselben, die Momente ¢,, ... g, als Zustands.
variable des System einfithren, welche durch » Gleichungen
von der Form

6L
g»y - 510;
definirt sind, wobei Z als Function der p,, ... p, und

’

7y ... p, zu denken ist.

§ 2. Ueber die Verteilung der moglichen Zustinde unter N
identischen adiabatischen stationdren Systemen, bei nahezu
gleichem Energieinhalt,

Seien unendlich viele (V) Systeme gleicher Art vorhanden,
deren Energieinhalt zwischen den bestimmten sehr wenig ver-
schiedenen Werten Z und Z + § £ continuirlich verteilt sind.
Agussere Krifte, welche nicht von einem Potential ableitbar
sind, sollen nicht vorhanden sein und 7, mége die Zeit nicht
explicite enthalten, sodass das System ein conservatives System
ist. Wir untersuchen die Zustandsverteilung, von welcher wir
voraussetzen, dass sie stationir sei.

Wir machen die Voraussetzung, dass ausser der Energie
E=L+ 7 + 7, oder einer Function dieser Grosse, fiir das
einzelne System keine Function der Zustandsvariabeln p und ¢
allein vorhanden sei, welche mit der Zeit sich nicht #ndert;
auch fernerhin seien nur Systeme betrachtet, welche diese
Bedingung erfilllen. Unsere Voraussetzung ist gleichbedeutend
mit der Annahme, dass die Zustandsverteilung unserer Systeme
durch den Wert von £ bestimmt sei, und sich aus jeden be-
liebigen Anfangswerten der Zustandsvariabeln, welche nur
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unserer Bedingung fiir den Wert der Energie Geniige leisten,
von selbst herstelle. Existirte nimlich fiir das System noch
eine Bedingung vou der Art ¢ (p,. ...gq,) = const.,, welche
nicht auf die Form ¢(£) = const. gebracht werden kann, so
wire offenbar durch geeignete Wahl der Anfangsbedingungen
zu erzielen, dass fiir jedes der N Systeme ¢ einen beliebigen
vorgeschriebenen Wert hitte. Da sich diese Werte aber mit
der Zeit nicht dndern, so folgt z, B, dass der Grisse > g,
erstreckt iiber alle Systeme, bei gegebenem Werte von E|
durch geeignete Wahl der Anfangshedingungen, jeder beliebige
Wert erteilt werden konnte. >l ist nun andererseits aus
der Zustandsverteilung eindeutig berechenbar, sodass anderen
Werten von > ¢ andere Zustandsverteilungen entsprechen.
Man ersieht also, dass die Existenz eines zweiten solchen
Integrals ¢ notwendig zur Folge hat, dass durch # allein die
Zustandsverteilung noch nicht bestimmt wire, sondern dass
dieselbe notwendig vom Anfangszustande der Systeme abhiangen
milsste.

Bezeichnet man mit ¢ ein unendlich kleines Gebiet aller
Zustandsvariabeln p,, ... p,, ¢, ... ¢, welches so gewshlt
sein soll, dass E(p,, ...q,) zw1schen E und E+4 5 F liegt,
wenn die Zustandsvariabeln dem (Gebiete ¢ angehbren, so ist
die Verteilung der Zustinde durch eine Gleichung von folgender
Form zu charakterisiren

d“\T—UZHs' gn)jdpl"'d%m’

4N bedeutet die Anzahl der Systeme, deren Zustandsvariable

‘0 einer bestimmten Zeit dem Gebiete g zugehdren, Die

Gleichung sagt die Bedingung aus, dass die Verteilung
stationar ist,

Wir wihlen nun ein solches unendlich kleines Gebiet G

Die Auzahl der Systeme, deren Zustandsvariable zu irgend

tiner bestimmten Zeit =0 dem Gebiete angehoren, ist dann

d N = w‘l\Pl' to Qn) fdPl T -dQn’
G

“Obel die grossen Buchstaben die Zugehorigkeit der abhingigen
‘ariabeln zur Zeit ¢= 0 andeuten sollen.
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Wir lassen nun die beliebige Zeit ¢ verstreichen, Besagy
ein System in 7= 0 die bestimmten Zustandsvariabeln 2, ,, ¢
30 besitzt es zur Zeit f=¢ die bestimmten Zustandsvariahef;
Pi+--q, Die Systeme, deren Zustandsvariabeln in ¢=0 gey,
Gebiete ¢ angehdrten, und zwar nur diese, gehoren zur Zeit ¢ .,
einem hestimmten Gebiete ¢ an, sodass also die Gleichung gij;.

dN = w(pl‘ v gw)f"
g

Fir jedes derartige System gilt aber der Satz von Liouvil‘lej
welcher die Form hat: '

fdPl, . dQuzfdpl, c.odg,.
Aus den drei letzten Gleichungen folgt
";U(Pﬂ e Qn) = 1,!"(7)17 s (]n)' 1)

vy ist also eine Invariante des Systems, welche nach dep
obigen die Form haben muss w(p, ...¢)=v*(£). Fu
alle betrachteten Systeme ist aber w”(£) nur unendlich wenig
verschieden von y*(E) = const., und unsere Zustandsgleichung
lautet einfach

dN=4[dp, ... dq,
g

wobel 4 eine von den p und ¢ unabhingige Grisse bedeutet.

§ 8. Ueber die (ata.’éioné.re) Wahrscheinlichkeit der Zustinde
eines Systems S, das mit einem System 2 von relativ unendlich
grosser HEnergie mechanisch verbunden ist,

Wir betrachten wieder unendlich viele (N) mechanische
Systeme, deren Energie zwischen zwei unendlich wenig ver-
schiedenen Grenzen E und E 4 6 E liege. Jedes solche mecha-
nische System sei wieder eine mechanische Verbindung eines
Systems § mit den Zustandsvariabeln p,, ...g, und eines
Systems 2 mit den Zustandsvariabeln =, ...y, Der Auns-
druck fiir die Gesamtenergie beider Systeme soll so beschaffen
sein, dass jene Terme der Knergie, weiche durch Kinwirkung
der Massen eines Teilsystems auf die des anderen Teilsystems

1) Ygl. L. Boltzmaunn, Gastheorie, II. Teil. § 82 u. § 37.
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binzukommen, gegen die Knergie F des Teilsystems § zu ver-
pachldssigen seien. Ferner sei die Energie /I des Teilsystems 3
unendlich gross gegen £. Bis auf unendlich Kleines hoherer
Ordnung ldsst sich dann setzen:

E=H+ E.
Wir wihlen nun ein in allen Zustandsvariabeln p,...g¢q,
7, . . - %, unendlich kleines Gebiet g, welches so beschaffen sei,

dass £ zwischen den constanten Werten E und E 4 0E liege.
Die Anzahl d & der Systeme, deren Zustandsvariabeln dem
Gebiet ¢ angehoren, ist dann nach dem Resultate des vorigen
Paragraphen:

AN = Afdpl dy,.
g

Wir bemerken nun, dass es in unserem Belieben steht, statt 4
irgend eine stetige Function der Energie zu setzen, welche
fir E = E den Wert 4 annimmt. Dadurch #ndert sich nimlich
unser Resuitat nur unendlich wenig. Als diese Function wihlen
wir 4. e=~2%E_ wobel h eine vorldufig belisbige Constante
bedeutet, fber welche wir bald verfiigen werden. Wir
schreiben also: '

dN=d [em218dp, ... dz,
g

Wir fragen nun: Wie viele Systeme bafinden sich in Zustinden,
sodass p, zwischen p, und p, +dpy, p, bez. p, und p,+dp,...q,
twischen ¢ und ¢ 4+dgq, 7, ., ., aber beliebige, mit den
Bedingungen wuunserer Systeme vertrigliche Werte besitzen?
Nennt man diese Anzahl d X', so erhilt man:

.
Y7

AN = 4 e~ Fdp, . dg, [e=? Fda . dy

Die Tntegration erstreckt sich dabei anf jene Werte der Zu-
Standsvariabeln, filr welche 4 zwischen E— Z wnd E — E+ 0E
liegt, Wir behexup‘ten nun, der Wert von 2 set auf eine und
Tir eine Weise so zu wihlen, dass das in unserer (leichung
ftretende Integral von & unabhingig wird.

Das Integral fe—2"%d 7, ...dy, wobei die Grenzen der
Ir;tegmtion durch die Grenzen E und E -+ JE bestimmt sein
Mogen, st nimlich bei bestimmtem SE offenbar lediglich
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Function von E allein; nennen wir dieselbe y (E) Dass in
dem Ausdruck fir 4N auftretende Integral lisst sich dann
in der Form schreiben:

¥ {E—K).

Da nun E gegen E unendlich klein ist, so ldsst sich dies bis
auf unendlich Kleines hoherer Ordnung in der Form schreiben:

Y(E-B) =z (B~ E/E).
Die notwendige und hinreichende Bedingung dafiir, dass jenes
Integral von £ unabhingig ist, lautet also

rd (E) = 0,
Nun lasst sich aber setzen
2(E) = e E 0 (E),

wobei o (E)= fdm, ...dy,, erstreckt itber alle Werte der
Variabeln, deren Energiefunction zwischen E und E 4 JE liegt.
Die gefundene Bedingung fiir 2 nimmt also die Form an:

e—m.w(E).{_m.wf..@} o,
o (E)

oder .

' @)

=41 -
S

Es giebt also stets einen und nur einen Wert fiir A,
welcher die gefundenen Bedingungen erfiillt. Da ferner, wie
im nachsten Paragraphen gezeigt werden soll, @ (E) und w’(E)
stets positiv sind, ist auch A stets eine positive Grosse.

Wihlen wir -2 in dieser Weise, so reducirt sich das
Integral auf eine von ¥ unabhingige Grdsse, sodass wir fir
die Zahl der Systeme, deren Variabeln p, ...g, in den be-
zeichneten Grenzen liegen, den Ausdruck erhalten

AN = 4"e-21E dp, ...dg,.

Dies ist also auch bei anderer Bedeutung vonr 4" der Aus
druck fir die Wahrscheinlichkeit, dass die Zustandsvariabeln
eines mit einem System von relativ unendlich grosser Energie
mechanisch verbundenen Systems zwischen unendlich nahen
Grenzen liegen, wenn der Zustand stationdr geworden ist.
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§ 4. Beweis dafiir, dass die Grdsse / positiv ist.

Sei ¢ (z) eine homogene, quadratische Function der Variabeln
T T Wir betrachien die Grosse z = fd=, ... dx, wobei
die Integrationsgrenzen dadurch bestimmt sein mégen, dass
¢ (x) awischen einem gewissen Wert y und y - 4 liege, wobei A
eine Constante sei. Wir behaupten, dass z, welches allein
von y Function ist, stets mit wachsendem y zunimmt$, wenn
n> 2.

Fihren wir die neuen Varla.beln ein r, =z ..
wobel & = const,, dann ist:

” ’ L
z.—ufd.z] ... dz).

Ferner erbalten wir ¢ (z) = «?q (2).
Die Integratlonsgrenzen des gewonnenen Integrals lauten
also fur ¢ (2)

’

..Z'n={;:l‘n,

Y und y,; + AZ
o o o

2

Ist ferner 4 unendlich klein, was wir annehmen, so erhalten wir

z= a"‘zfa’xl’

Hierbei ist y zwischen den Grenzen

Y
m—"’; und a—yﬂ—}-z}.

Obige Gleichung lasst sich auch schreiben
z{y) = w"“%(%)'

Wihit man ¢ positiv und = > 2, so ist also stets

ST > 1,

Y
* (F)
was zu beweisen war.
Dieses Resultat benutzen wir, um zu beweisen, dass A
positiv ist.
Wir fanden
w (E)
R T
i . © 0l(E)
wobei

ro(E):fr!pl e dy
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und E zwischen E und E+ JE. w(E) ist der Definition nach
notwendig positiv, wir haben nur zu zeigei, dass auch o' (E)
stets positiv ist.

Wir wahlen E; und E,, sodass E, >E1, und beweisey
dass w(E;) > @(E,) und zerlegen  (E)) in unendlich Vlehf
Summanden von der Form :

d(w€)) =dp, ... dp, [dg, ... dg,.

Bei dem angedeuteten Integral besitzen die p bestimmte
zwar solehe Werte, dass 7= E,. Die Integrationsgrenzen deg
Integrals sind so charakterisirt, dass L zwischen E, — 7 wyq
E, -+ OE — /™ liegt.

Jedem unendlich kleinen derartigen Summanden entspricht
aus w(E,) ein Term von der (rosse

dlw(E,)] = dp, ...dpnfdgl...dgn,

wobei die p und dp die nimlichen Werte haben wie in d [w (E,)),
L aber zwischen den Grenzen E, — 7 und E,— 7+ JE hegt
Es ist also nach dem eben bew1esenen Satze

diw(Ey)] > d[w(E)].
Folglich
2 dle(E)] > 2 diw (El)]’

wobei > iiber alle entsprechende Gebiete der p zu erstreckenist.
Es ist aber
2 d [w-(Eﬂl =W (E]),
wenn das Summenzeichen tiber alle p erstreckt wird, sodass

F=E,.
Ferner ist
Z d[w (E,)] < w(E,),

weil das Gebiet der p, welches durch die Gleichung
F=E,

bestimmt wird, das durch die Gleichung

definirte Gebiet vollstindig in sich einschliesst.
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3 5. Ueber das Temperaturgleichgewicht.

Wir whklen nun ein System S von ganz bestimmter Be-
schaffenheit und nennen es Thermometer. Ks stehe mit dem
System X von relativ unendlich grosser Energie in mecha-
nischer Wechselwirkung. Ist der Zustand des Ganzen stationir,
so ist der Zustand des Thermometers durch die Gleichung
definirt :
AW =Ade-2tEdp ... dyg,
wobei d /i die Wahrscheinlichkeit dafiir bedeutet, dass die
Werte der Zustandsvariabeln des Thermometers innerhalh der
augedeuteten Grenzen liegen. Dabei besteht zwischen den
Constanten 4 und /. die Gleichung

1= A.fe‘—%ﬂdp, Coodyg,

wobei die Integration iiber alle méglichen Werte der Zustands-
variabeln erstreckt ist. - Die Grésse A bestimmt also den Zu-
stand des Thermometers vollkommen. Wir nennen % die Tem-
peraturfunction, indem wir bemerken, dass nach dem Gesagten
jede an dem System S heobachtbare Grosse /7 Function von &
allein sein muss, solange 7, unverindert bleibt, was wir an-
genommen haben. Die Grisse 2 aber hingt lediglich vom
Zustande des Systems I ab (§ 8), ist also unabhiingig davon,
wie X mit § thermisch verbunden ist, Es folgt daraus un-
mittelbar der Satz: Ist ein System X mit zwei unendlich
kleinen Thermometern 8 und & verbunden. so kommt diesen
beiden Thermometern dieselbe Grosse & zu. Sind § und §
identische Systeme, so kommt ihnen anch noch derselbe Wert
der beobachtbaren Grosse 4 zu.

Wir fihren nun nur identische Thermometer § ein und
hennen /7 das beobachtbare Temperaturmaass. Wir erhalten
also den Satz: Das an § beobachtbare Temperaturmaass
ist unabhingig von der -Art, wie T mit § mechanisch ver-
hunden ist; die Grisse I Destimmt A, dieses die Energie E
des Systems = und diese dessen Zustand nach unserer Vor-
faussetzung.

Aus dem Beswiesenen folgt sofort, dass zwei Systeme
=\ und =, im Falle mechanischer Verbindung kein im statio-

dnnalen der Physik, V. Falge. 0 23
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niren Zustand befindliches System bilden kbunen, wenn Bichy
zwel mit ihnen verbundene Thermometer & gleiches Tgy,.
peraturmaass oder. was dasselbe bedeutet, sie selbst glejop,
Temperaturfunction besitzen. Da der Zustand der Systep,
=) und X, durch die Grossen k und 4, oder H, ung H,
vollstindig definirt wird, so folgt, daqs das Temperaturglelgh
gewicht lediglich durch die Bedingungen % =2, oder /| =1,
bestimmt sein kann.

Es bleibt jetzt noch iibrig, zu zeigen, dass zwei Systen
von gleicher Temperaturfunction 2 (oder gleichem Temperatyy.
maass /) mechanisch verbunden werden kdnoen zu ejney
einzigen System von gleicher Tempemtuxfundion

Seien zwei mechanische Systeme 2 und 2, mechanig,
zu einem System verschmolzen, so jedoch, dass die Terpy,
der Energie unendlich klein sind, welche Zustandsvariabely,
beider Systeme enthalten. Sowohl 2| als 2 seien verknipf;
mit einem unendlich kleinen Thermometer 8. Die Angabe,
H, und H, desselben sind bis auf unendlich Kleines jeder,.
falls dieselben, weil sie sich nur auf verschiedene Stellen, sines
einzigen, im stationfiren Zustande befindlichen Systems pe.
ziehen, Ebenso natiirlich die Grissen &, und A,. Wir denken
uns nun unendlich langsam die beiden Systemen gemeinsame
Terme der Energie gegen Null hin abnehmen. Hierbel indern
sich sowohl die Grissen H und %, als auch die Zustands-
verteilungen beider Systeme unendlich wenig, da diese allein
durch die Energie bestimmt sind. Ist dann die vollstiindige
mechanische Trennung von 2| und =, ausgefuhrt, so bleiben
gleichwohl die Beziehungen

Hy = Hy, Iy=h

bestehen und die Zustandsverteilung ist unendlich wenig ver-
andert. A, und A, beziehen sich aber nur mehr auf 3,
H, und h, nur mebr auf =,. Unser Process ist streng um-
kehrbar, da er sich aus einer Aufeinanderfolge von stationaren
Zustinden zusammensetzt. Wir erbalten also den Satz:

Zwei Systeme von der gleichen Temperaturfunction #
lassen sich zu einem einzigen System von der Temperatur
function % verkniipfen, sodass sich derén Zustandsverteilung
unendlich wenig &ndert. ’

|
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(zleichheit der Griéssen 4 ist also die notwendige und
hinreichende Bedingung fiir die stationire Verkniipfung (Warme-
dleichgewicht) zweier Systeme. Daraus folgt sofort: Sind die
Systeme X und 2, und die Systerie =) und X statiouér
mechanisch verkniipfbar (im Warmegleichgewichte), so sind
s auch =, und =,

Ich will hier hemerken, dass wir bis jetzt von der Vor-
aussetzung, dass unsere Systeme mechanische seien, nur inso-
fern Gebrauch gemacht haben, als wir den Liouville’schen
Satz und das Energieprincip verwendet haben, Wahrschein-
lich lassen sich die Fundamente der Wirmetheorie fiir noch
weit allgemeiner definirte Systeme entwickeln. Solches wollen
wir hier jedoch nicht versuchen, sondern uns anf die mecha-
nischen Gleichungen stitzen. Die wichtige Frage, inwiefern
sich der Gedankengang von dem benutzten Bilde loslésen und
verallgemeinern lésst, werden wir bier nicht behandeln.

§ 6. Ueber die mechanische Bedeutung der Grosss 7.1)

Die lebendige Kraft Z eines Systems ist eine homogene
Quadratische Function der Grossen g. Durch eine lineare
Substitution lassen sich stets Variable » einfithren, sodass die
lebendige Kraft in der Form erscheint

= Lz r? 2 2
L=4%le,r} +ayr;+.. . +e,rh

dg, ...dg = |dr, ...dr,
f%_ T f 1 n

“'em_l man die Integrale iiber entsprechende unendlich kleine
; ?blete ausdehnt. Die Grissen r nennt Boltzmann Momen-
::1?911: Die mittlere lebendige Kraft, welche einer Momentoide
g:ﬁ“l—‘l‘lcht, wenn das System mit einem anderen, von viel
Sserer Knergie, ein System bildet, nimmt die Form an:

ind dagg

2
G Py

2

non A

cdp.odp, . dry. . dr,

A ‘_?)‘I}';u rﬂ.+(;nrz+...+u r %
j e Tt aod dpy o dpadryooodr,

1) Vgl. L, Boltzmann, Gastheorie, II. Teil, 8§ 83, 54, 42,
28*
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Die mittlere levendige Kraft aller Momentoiden ejney
g ag
Svstems ist also disselbe und gleich:

i 1

s "o

wobel Z die lebendige Krafi des Systems bedeutet.

§ 7. Ideale Gase. Absolute Temperatur.

Die entwickelte Theorie enthilt als speciellen IFall dje
Maxwell’sche Zustandsverteilung der idealen Gase. Verstehey
wir namlich in § 3 unter dem Systent § ein Gasmolecil, unter
X die Gesamtheit aller anderen, so folgt fiir die Wahrscheiy.
lichkeit, dass die’ Werte der Variabeln p, ...q, von § iy
einem in Bezug auf alle Variabeln unendlich kleinen Gebiet ¢
liegen, der Ausdruck

d W= zie—z"’fffdpl o dg,.

g

Auch erkennt man sogleich aus unserem, fiir die Grésse 4 Iy
& 3 gefundenen Ausdruck, dass die Grisse & bis auf unend.
lich Kleines die nfmliche wire fir ein Gasmoleciil anderer
Art, welches in dem Systeme vorkommt, in dem die Systeme 3|
welche A bestimmen, fir beide Moleciile bis auf unendlich
Kleines identisch sind. Damit ist die verallgemeinerte Max.
well’sche Zustandsverteilung fiir ideale Gase erwiesen. —

Ferner folgt sofort, dass die mittlere lebendige Kraft des
Schwerpunktsbewegung eines Gasmoleciiles, welches in einen
System § vorkommt, den Wert 8/4 2 besitat, weil dieselbe dre
Momentoiden entspricht. Nun lehrt die kinetische Gastheorie
dass diese Grosse proportional dem vom Gase bei constante
Volumen ausgeiibten Druck ist. Sétzt man diesen definitions
gemiiss der absoluten Temperatur 7 proportional, so hat ma
eine Beziehung von der Form

y 1 o (E)
- = 2] =1 I
4 L€

wobel » eine universelle Constante, w die in § 3 eingefiihr
Function hedeutet.
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§ 8. Der zweite Iauptsatz der Wirmetheorie als Folgerung der
mechanischen Theorie.

Wir betrachten ein_ gegehenes physikalisches System §

als wechanisches System mit den Coordinaten p, ...p,. Als
. . * N : : -

Zustandsvariable in demselben fithren wir ferner die Grossen

R S . R

— I3

ar =g T

ein. P, . P, scien die dusseren Krifte, welche die Coordi-
naten des Systems zu vergrdssern streben. 7, sei die poten-
tielle Energie des Systems, Z dessen lebendige Kraft, welche
eine homogene quadratische Function der p,; ist. Die Be-
wegungsgleichungen von Lagrange nehmen fiir ein solches
System die Form an
oF=L), 4 1ok

il 6571_1)”:0’ w=1,..r=n.

Die dusseren Krafte. setzen sich aus zweierlei Kriaften zu.
sammen, Die einen, PY), sind digjenigen Krifte, welche die
Bedingungen des Systemns darstellen, und von einem Potential
ableitbar sind, welches pur Function der p, ... p, ist (adia-
hatische Wande, Schwerkraft ete.):

¥V,
. Ere

Da.wir Processe zu betrachten haben, welche mit unendlicher
Anniherung aus stationiten Zustinden besteben, haben wir
“hzunehmen, dass 7 'dié'Zeit zwar explicite enthalte, dass
sher dig partiellen Ableitungen der Grissen 67 /dp, nach
der Zeit unendlich klein seien. '

Die anderen Kriafte, P = I, seien nicht von einem
Putential ableitbar, welches nur von den p, abhangt. Die
Krifte I7, stellen die Krafte dar, welche die Wirmezufuhr
Yermitieln,

Setzt man 7 + 7,
fiher ip “ ‘

(1)
¥

= 7, so gehen die (leichungen (1)

T = B{V~Lj d {6 Lf} )

Ebr dt \3py
]“)‘@ Arbeit, welche durch die Krifte 77, in der Zeit d¢ dem
SIstem gugefihrt wird, ist ‘dann  die Darstellung der vom
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System &  wihrend d ¢ aufgenommenen Wirmemenge d Q, welchg
wir im mechanischen Maass messen wollen.

< &V oL
dQ=S1dp, = D G~ 2 5 dn

a]%
, : dpl _d EL
“'“Z di dt{a,?;}dt
Da aber
, d 6L ' L 8L L
S’p" ai {a *”}dt—ilzpvé'ﬁ;‘j— '?ﬁ?dpy'
ferner

8L o ' 6L 3L .
r'g*;;vav=2L, Zgﬁ;d{’w’l’i’ﬁjd}’v:dlf’

s0 ist
dg = 9% dp, +dL
Da ferner
' i L
T= = wa
s0 ist

(1) =t pdan DN

; Wir beschiftigen uns nun mit dem Ausdruck
' 8V
Z & P dpy.

Derselbe stellt die Zunahme des Systems an potentieller Energie
dar, welche stattfinden wiirde withrend der Zeit d¢, wenn /
nicht explicite von der Zeit abhingig wire. Das Zeitelement d¢
gei 80 gross gewihlt, dass an die Stelle jener Summe deren
Mittelwert fiir unendlich viele gleichtemperirte Systeme -8 ge-
setzt werden kann, aber doch so klein, dass gie expliciten
Aenderungen von & und 7 pach der Zeit unendlich klein sejen.

Unendlich viele Systeme § im stationéiren Zustande, welche
alle identische 2 und ¥, besitzen, mbgen {bergehen in neue
stationére Zustinde, welche durch die allen gemeinsamen Werte
A+ 0h, ¥ -+ 0F charakterisirt sein mégen. ,,0* bezeichne
allgemein die Aenderung einer Grosse beim Uebergang des
Systems in den neuen Zustand; das Zeichen 4 bezeichne

nicht mehr die Aenderung mit dex Zeit, sondern Differentiale
bestimmter Integrale. —
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Die Anzahl der Systeme, deren Zustandsvariable vor der
Aenderung innerhalb des unendlich kleinen Gebietes ¢ sich
befinden, ist durch die Formel gegeben

AN = de=220+0 [dp .. dp,

dabei steht es in unserer Willkiir, fir jedes gegebene % und 7,
die willkiirliche Collstante von F so zu whhlen, dass die Con-
stante 4 der Einheit gleich wird, Wir wollen dies thun, um
die Rechnung einfacher zu gestalten, und die so genauer defi-
nirte Fun¥tion 7* nennen.

Man sieht nun leicht, dass die von uns gesuchte Grésse
den Wert erhglt:
wobei die Integration iiber alle Werte der Variabeln zu er-
strecken ist. “Dieser Ausdruck stellt ndmlich die Vermehrung
der mittleren potentiellén Energie dées Systems dar, welche
eintriite, wenn zwar die Zustandsverteilung sich gemiss & /%
und §4 &nderte, 7 aber sich nicht explicite verinderte.

Ferner erhalten wir: . :

] dxh Z%dp,, — 4t (Sl VD AL P odpy L dy,
l =4xd[h 7= *E [ernmengar)
dpl e dgn'

Die Integrationen sind hier und im Folgenden tiber alle mog-
lichen Werte der Variabeln zu erstrecken. Ferner hat man
“0 bedenken, dass die Amzahl der betrachteten Systeme sich
vicht Andert. Dies liefert die Gleichung:

[a@2reryap, . dg, =0,

o)

oder

f‘-’h““’""’fi deFidp, ... .dg, + ()‘fzfe‘Qh“"*zL?J(,L)’

oder dp, ...dg, =10,

W SE (e n s dp, o dg, + 42 Tok =0,

i
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7 und L bezeichren die Mittelwerte der potentiellen Energie
und der lebendigen Kyaft der A -Systeme. Durch Additio,
von (3) und {4 erhiilt man:

py ?CD} dpy =428k 1]+ 421 .00,
oder, weil

= ;i 31 =-;4JZ~,—,M,

d L

4//:? - a’/: =4x20[AF—nzx- P

Setzt man diese Eormel in (1) ein, so erhalt man
40 _oen =0 ]
Q/T ist also ein vollstindiges Differential. Da

£=n;¢, alsa 6(—{?):0
T 1 X
ist, so lasst sich auch setzen

40 _ (5(11)

E*|7 ist also bis auf eine willkiirliche additive Constante der
Ausdruck fur die Entropie des Systems, wobel, B = /" + [
gesetzt ist. Der zweite Hauptsatz erscheint also als not-
wendige Folge des mechanischen Welthildes.

§ 9. Berechnung der Entropie.

Der fur die Entropie ¢ gefundene Ausdruck &= E*/T
ist nur scheinbar so einfach, da E* aus den Bedinfungen des
mechanischen Systems erst berechnet werden muss. Es ist
namlich

Ef=E+ £,

wobel £ unmittelbar gegeben, %, aber durch die Bedingung

fe‘“(f"Eo?' dp, ...dqg, = N
als Function voun & und A zu Dhestimmen ist. Man erhilt so:

c ___;T,f — f-l— 25 log {fg—‘zf.-fdpl .. .‘(an} + const.



Kinetische Theorie des Wirmegleichgeawichtes efe. 453

In dem so gefundenen Ausdruck ist die der Grisse £ zuzn-
figende willktirliche Constante ohne Kinfluss aunf das Resultat,
wmd das als ,,const® bezeichuete dritte Glied ist von Fund 7
unabhingig. U

Der Ausdruck fir die Entropie & ist darum merkwiirdig,
weil er lediglich von # und T abhingt, die specielle Form
von E als Summe potentieller Energie und lebendiger Kraft
ahber nicht mehr hervortreten ldsst. Diese Thatsache ldsst
vermuten, dass unsere Resultate allgemeiner sind als die be-
nutzte, mechanische Darstellung, zumal der in & 3 fuir & ge-
funden% Ausdruck dieselbe Eigenschaft aufwerst.

- ,

§ 10. BErweiterung des zweiten Hauptsatzes.

Ucher die Natur der Krifte, welche dem Potential 7
entsprechen, hrauchte nichts vorausgesetzt zu werden, auch
nicht, dass solche Kriifte in der Natur vorkommen. Die mecha-
nische Theorie der Wiarme verlangt also, dass wir zu rich-
tigen Resultaten gelangen, wenn wir das Carnot’sche Princip
auf ideale Processe anwenden, welche aus den beobachieten
durch Einfihrung beliebiger 7 erzeugt werden kdnnen. Natiir-
lich haben die aus der theoretischen Betrachtung jener Processe
gewonnenen Resultate nur dann reale Bedeutung, wenn in
thnen die idealen Hilfskrafte 7, nicht mehr vorkommen.

Bern, Junl 1902.

(Eingegangen 26. Juni 1902))



