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4. Ueber irreversible Stranlungsvorydnge;
von Max Planch.

(Nachtrag)

(Aus den ditzungsber. d. k. Akad. d. Wissensch. zu Berlin vom 8. Mai 19,
fiir die Anpalen bearbeiret vom Verfasser)

In den Untersuchungen irreversibler Strahlungsmrgange)
itber die ich im vorigen Jahre in diesen Annalen’) zusammey.
fassend berichtet habe, konnte ich zeigen, dass eine Theorie,
welche die Krscheinungen der Licht- und Warmestrahlung 4l¢
rein elektromagnetische Vorgange auffasst, anch fir die beidep
Hauptsiatze der Thermodynamik in ihrer Anwendung auf
strahlende Wirme eine Erklirung und einen Beweis auf rein
elektromagnetischer Grundlage zu fithren gestattet, wofern may
pur eine Voraussetzung einfihrt, die ich als die Hypothese
der natiirlichen Strahlung bezeichnet habe, und die im wesent-
lichen darauf hinauskemmt, dass ein jeder auch noch so
homoegen erscheinender Licht- und Wéarmestrahl als ein aps
sehr vielen einfach harmonischen Flementarschwingungen von
nahezu gleicher Periode unregelmissig zusammengesstzter Vor-
gang anzusehen ist.

Der wichtigste und zugleich schwierigste Punkt dieser
Untersuchung lag in dem Nachweis, dass eine durch den je-
weiligen physikalischen Zustand des betrachteten Systems voli-
kommen bestimmte Grésse existirt, welche die Higenschaft
besitzt, bel allen in dem System sich abspielenden Vorgingen
sich immer nur in einem bestimmten Sinne zu #ndern, also,
je mnach der Definition ihres Vorzeichens, entweder immer zu
wachsen oder immer abzunehmen. Sobald eine derartige
Function des Zustandes sich angeben lisst, ist zugleich auch
der Nachweis geliefert, dass die physikalischen Vorginge in
dem System einseitig, irreversibel, verlaufen, und dass sie be-
stindig einem gewissen Endzustand, dem stationiiren Zustand,

1) M. Planck, Ann. d. Phys, 1. p. 69. 1900,
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sustreben, welcher erreicht ist, wenn jene Function ihr absolutes
Maximum bez. Minimum annimmt. Daher erschliesst die voll-
stindige Kenninis des Ausdruckes dieser Function zugleich
auch die genaue Kenntnis des stationiren Strahlungszustandes
in seiner Abhingigkeit von den Fnergien und den Schwingungs-
zahlen aller in dem System vorhandenen Strahlen, inshesondere
aach die Verteilung der Energie auf die einzelnen Gebiete
des stationdren, sogenannten Normalspectrums.

Kine derartige sich bestindig in demselben Sinne &ndernde
3rosse von sehr einfacher mathematischer Form machte ich
muerst fiir concentrische Kugelwellen, in deren Centrum sich
ein linearer Resomator befindet?), spiter aunch fir beliebige
Strahlen in einem hinreichend ausgedehnten evacunirten Raum
mit eingelagerten linearen Resonatoren? direct namhaft, und
damit war der Nachweis der Irreversibilitit der betrachteten
Strahlungsvorginge erbracht. Wegen ihrer Analogie mit der
sus der Thermodynamik bekannten Function nannte ich diese
Grisse die elektromagnetische Entropie des Systems; bei allen
hetrachteten Strahlungsvorgiingen nimmt ihr Wert bestindig
. Das Maximum dieser Kntropie ergab fiir den stationiren
Zustand diejenige spectrale Knergieverteilung, welche einige
Jahre vorher W. Wien, von anderen Hypothesen ausgehend,
als nmormale Energieverteilung bingestellt hatte, und welche
damals durch die neuesten und genauesten Spectralmessungen,
namentlich von F. Paschen, als der Wirklichkeit nahe ent-
sprechend erkannt worden war. Dadurch wurde ich zu der
Ansicht gefithrt, der ich auch in meiner letztgenannten Mit-
teillung Ausdruck gab, dass jener von mir urspriinglich nur durch
Detinition eingefithrte Ausdruck der elektromagnetischen Entropie,
als der einzige seiner Art, den ich damals anzugeben wusste,
auch der allgemeine sei, woraus dann notwendig hervorgehen
wirde, dass das Wien’sche Energieverteilungsgesetz fir alle
Temperaturen und Wellenlangen Giltigkeit besitzt. Inzwischen
bat sich aber diese Ausicht als irrig erwiesen, da nenere K-
falirungen, und zwar namentlich die Messungen von O. Lummer

1) M. Planck, Sitzungsber. d. k. Akad, d, Wissensch. zu Berlin
b 1122, 1897; p. 445, 1898,
2} L oc. p. 440, 18990
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und B, Pringsheim?), sowic die von H. Rubens und F. Kyy).
baum?) fir lingere Wellen bez. Liohere Temperaturen zweifol
iose Abwelchungen vom Wiew'schen (esetz ergeben habern.

Hierdurch wurde dis Theorie wiederum vor die Aufuahe
gestellt, einen nsuen Ausdinck fir die Entrople zu finde,
von umfassenderer Bedeutung, welehier einerseits, ebensy \\'i‘;
der frither von mir aufgestellte, bei den betrachteten Stmhlungs_
vorgingen sich bestindig vergrossert, andererseits aber fiir dey
stationfiren Strahlungszustand eine Energieverteilung liefert je
allen durch die Messungen festgesteliten Verhiltnissen oy,
spricht.  Natiirlich muss dieser Ausdruck der Kntropie iy
kurze Wellenlingen oder tiefe Temperaturen in den fritherey,
dem Wien’schen Gesetz entsprechenden einfachen Ausdruelk
ibergehen.

Es mag vielleicht auf den ersten Blick befremdhch er-
scheinen, dass nicht nur ein einziger, sondern dass mehrere
verschiedenartige Functicnen des Zustandes existiren konnen,
welche alle die FEigenschaft besitzen, bei den betrachtetan
Strahlungsvorgingen bestandig an Grisse zuzunehmen, Doch
erklirt sich dieser Umstand wohl aus der wiederholt von miy
hervorgehobenen Thatsache, dass die hier betrachieten Stral-
lungsvorginge noch lange nicht die allgemeinsten sind, welche
in der Natur stattfinden konnen. Wiirde man im stande sein,
die allgemeinsten in der Natur mdglichen Strahlungsprocesse
einer entsprechend genauen Analyse zu unterwerfen, so wiirde
man wahrscheinlich finden, dass es nur eine einzige Function
giebt, welche die Eigenschaft der Entropie besitzt, unter allen
Umstinden an Grosse zuzunehmen. Doch scheint bei dem
jetzigen Stande unserer Kenntnisse dieser Weg zur Bestimmung
des Ausdruckes der Entropie noch nicht gangbar zu sein.

Wenn es aber nur auf den Nachweis der Irreversibilitit
der betrachteten Vorgéinge ankommt, dann geniigt es offenbar,
wenn auch nur eine einzige Function des Zustandes namhaft ge-
macht wird, welche die Eigenschaft besitzt, mit der Zeit bestindig
zn wachsen, Ich habe diesen Punkt schon in einer fritheren

1) O.Lummeru E. Pringsheim, Verhardl d. Deutschen Physik.
Gesellseh. 2. p. 185, 1900,
2} H. Rubens u. F. Kurlbaum, Ann. d. Phys. 4. p. 649, 14901
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{ Mitteilung ) in  gleichem Sinue besprochen aud kann mich
dsher hier mit einem Hinwels auf jene Bemerkungen be-
: gniigen.
| Fir die oben bezeichnete Aufgabe hat sich mir nun in
der That eine I.bsung ergeben, da ein Ausdruck fiir die
Batropie abgeleitet werden kann?), welcher, auf den Zustand
tder stationiiren Strahlung (des ,,Wirmegleichgewichtes) an-
gewendet, mit den bisher durch directe Messungen festgestellten
Thatsachen ®) vertriiglich zu sein scheint. Es bleibt daher fiir
die Theorie der irreversiblen Strahlung noch der Nachweis zu
grbringen  tibrig, dass der namliche Ausdruck der Entropie
ach bei allen in der bisher entwickelten Theorie betrachteten
;Mchtstationdren Strahlungsvorgiingen thatsichlich immer an
 Grosse zunimmt, und dies soll in der folgenden Mitteilung
] geschehen.

Tm Interesse grosserer Kiirze und Bequemlichkeit beziehe
ich mich dabei unmittelbar auf die Definitionen, Bezeichnungen
Lund Sitze meines am Kingang citirten gleichbetitelten Auf-
iatzes und fithre auch die Numerirung der Paragraphen und
for Gleichungen einfach in fortlaufender Reihe weiter.

\§ 21. Umfassendere Definition der elektromagnetischen HEntropie.

-

1

| Wir definiren jetzt, ebenso wie in § 17, eine neue durch
- fen physikalischen Zustand des Systems bestimmte Grosse 8,
,‘dle wir die totale elekiromagnetische Entropie des Systems nennen:

S—-—ZS—;—ISEZT.
t
Die Summation > ist wieder iber alle Resonatoren, die In-

egratlon itber alle Raumelemente 4 ¢ des durehstrahlten Feldes

N,

: 1y M. Planck, Sitzungsber. d. k. Akad. d. Wiszensch. zu Berlin

452§, 1808,

: 2y 3. Planck, Ann. d. Phys. & p. 53538, 1901

! 3) H. Rubens u. F. Karlbaum, L. ¢: F. Paszchen, Ann. <

fph}’& 4. p. 277, 1901; O. Lommer u. E Pringshein, Verhaudl d

(“tutschen Physik. Gesellsch. 3. p. 39, 1901, Bei einigen Messungen ist
!Aerdmos poch eine kleine Diserepanz zwischen Beobachtung und Theorie

"‘hllg geblichen (vgl. O. Lummer u. E. Pringsheim, Aon, d. Phys.

Z'P 192, 1901), deren Aufklirung der Zukunft vorbebalten bleiben muss.

i . dnnglen der Physik. IV. Folge. &. h4

!
t
i
i
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zu erstrecken. Daher nennen wir § die Entropis eines einzelnep
Resgonators und s die Entropiedichite in einemn Punkte des Feldag
Die Entropie & eines Besonators mit der Sehwingunee

5 MRS

zahl w und der Energie {7 definiren wir folgendermanssen.
- ‘ TR ‘ I l .

(s Se kD Vo [T+ | fug L
v [ R ”‘ Y/ /J lor v Jroe )

wobel £ und & zwei wniverselle positive Constanten bezeichng,,
Fur kleine Werte des Avgumentes f», d. h. {tr kurze Wellg).
lingen oder kleine Knergien, fiilt diese Function mit ey,
frither, in Gleichung (41) eingefiithrten Ausdruck von & gy
sapimen,  Dewn Lierftir ergiebt sich, mit Weglussung dg,
kleinen Grossen hoherer Ordnung:

. M U
S=-—, g,
wihrend die friohere Definttion nach Gleichung (41} lautete:
, o U
S=— iy lOg'ebw'

Man sieht daraus zunichst, duss der Giltigkeitsbereie)
der aus der fritheren Definition abgeleiteten Sitze sich hier
auf dusgjenige Gebiet der Wellenlingen und Energien be.
schrinkt, fur welches €//v klein ist gegen A Ferner lassen
sich offenbar die Zahlenwerte der Constanten 4 und % durch
Vergleich mit den frither von mir aus den Messungen von
F. Kurlbaum und von F. Paschen berechneten Werte voy
a und 5 leicht bestimmen. Denn durch Vergleichung der
beiden letzten Ausdriicke von § ergiebt sich:

h =& und k:b-
4]

Nun hatte ich im § 25 gefunden:
a = 0,4818.10-1% sec x grad,
b = 6,885.10% erg x zec.
Folglich: )
h = 6,885.10-% erg x sec,
b= 1,429, 1010 .98
’ grad
Die inzwischen aus den Messungen von F. Kurlbaum
und von O, Lummer und K. Pringsheim von mir berechneien
Werte?) sind dagegen:

1) M. Planck, Ann, d. Phys. 4. p. 563. 1901.
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h = 6,05.10"% erg X sec,
(59)

k= 1846.10-18 %5
k gred

Die Divergenz der Zahlen entspricht den Abweichungen
in den Messungen der verschiedenen Beobachter und giebt ein
mgefihres Bild der zur Zeit noch bestehenden Unsicherheit.

Die riumliche Entropiedichte s in einem Punkte © des
durchstrahlten Keldes bestimmen wir ebensn wie die raumliche
Energiedichte » aus der Betrachtung aller Strahlen, die diesen
Punkt durchkreuzen. Wir schreiben nimlich jedem Strahlen-
hindel ausser einer bestimmten KEnergie auch eine bestimnmte
Entropie zu, die sich mit dem Bundel zusammen fortpfianat.
Denken wir uns, ganz ebenso wie im § 11, vom Punkte D
aus in irgend einer Richtung (&, ¢) eine kleine geradlinige
Strecke r gezogen uund sowohl im Anfangspunkt als anch im
Endpunkt der Strecke je ein Flachenelement. do und Jo
senkrecht zu » gelegt, so sei der Gesamtbetrag der Entropie,
welche in der Zeit d¢ durch die Fliche d« der Fliche do
mgestrahlt wird, gleich dem Ausdruck:

(60) ae "I,

wobel 7, die Intensitit der Entropiestrahlung in der Richtung
(#, ), aufl sogleich niher anzugebemle Weise von der Be-
schaffenheit der Strahlung abhangt.

Wir setzen 7, ebenso wie A im § 11, gleich einer Summe,
deren Glieder durch die einzelnen monochromatischen in der-
selben Richtung fortschreitenden Strahlen bedingt werden, und
definiren die Intensitat der Entropiestrahlung eines mono-
thromatischen, vollstindig?!) polarisirien Strables ven der In-
bensitat @ durch den Ausdruck?):

L0 2 ; 2 2 el
I L S S i

1) Ob der Strabl geradlinig oder elliptisch polarisirt ist. macht fiir
Stine Entropie keinen Unterschied, da man jeden vellstindig elliptisch
Polarisirten Strahl ohne weiteres, z. B. durch totale Reflexion, in einen
geradlinig polavisirten verwandeln kann,

2) Dieser Ausdruck ergiebt sich, wenn man die Gleichung (38) mit
den allgemein giiltigen Gleichungen {1v) uud (8) meiner Abbandlung dber
Entropie und Vemperatur strablender Wirme, Ann. d. Phys. 1. p. 719. 1900,
tembinirt.

54%
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In dem aligemeinen Fall, dass der monochromatisel,
Strahi nieht geradlinig polarisirt ist, sondern die Hauptinte,, ke
sititen & und & besitzt?), betriigt die Intensitit seiner K

ntropie. -
strahlung:

¢4+

wobei € den Wert bedeutet, den der Ausdruck (61) fur g
statt & annimmt. Daher ist die Gesamtintensitit der Entropi,.
strahlung in der Richtung (&, ¢):
/= }'m (@ 4 ©)
o
und die rdumliche Entropiedichte, analog der Gleichung @7
§ = iJﬂ]/.(/..Q.

Sind speciell alle durch & gehenden Strahlen unpolarisipt
und ihre Intensitit unabhingig ven der Richtung, so wird
=8, =g, und:

(62) L:?fdy.ﬁ.
0
Daher:
47l 8
(63) s =07 7;,.L[dw.9.
5}

§ 28. Wermehrung der Entropie,

Wir wollen nun, auf Grund vorstehender Definition, die
Aenderung berechnen, welche die totale Entropie S, unseres
Systems im Zeitelement d¢ erleidet. Wir halten uns dabei
genau an die analoge im § 16 fir die Energie des Systems
durchgefithrte Rechnuang. ,

Wenn gar kein Resonator vorhanden ist, so behilt ein
jedes der im Felde vorhandenen unendlich vielen Strahlen-
bindel beim geradlinigen Fortschreiten zugleich mit seiner
Intensitit seine Entropie unverindert bei, auch bei der Re-
flexion an einer als eben und absolut spiegelnd vorausgesetzten
Grenzfiiche des Feldes. Durch die Strahlungsvorginge im

1) Vgl oben § 11.
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freien Felde kann also keine Entropieinderung des Systems
hervorgernfen werden.!) Dagegen bewirkt jeder Resonator im
sllgemeinen eine Entropieduderung der ihn treffenden Strahlen-
bindel. Berechnen wir die ganze Kmtropieinderung, welche
der oben betrachtete Resonator in der Zeit d¢ in dem ihn
umgebenden Felde hervorruft. Dabei brauchen wir nur die-
jenigen monochromatischen Strahlen zu beriicksichtigen, welche
ler Schwingungszahl » des Resonators entsprechen, da die
ibrigen durch ihn gar nicht alterirt werden.

In der Richtung (#, ¢) wird der Resonator von einem
irgendwie polarisirten Strahlenbiindel getroffen, dessen Energie-
sirahlung die Hauptintensitaten § und &, und dessen Entropie-
strahlung daher die Intensitit € 4+ @ besitzt. Dieses Strahlen-
biindel lisst, der Bedeutung des Ausdruckes (36) gemiss, in
ler Zeit d¢ die Entropie:

3¢t
T A0
4w

& + ). d¢.
saf den Resonator fallen, und dadurch wird auf der Seite der
ankommenden Strahlen der nimliche Entropiebetrag dem Felde
tntzogen. Auf der anderen Seite geht vom Resonator in der-
selben Richtung (%, ¢) ein in bestimmter Weise polarisirtes
Strahlenbiindel aus, dessen Energiestrahlung die Hauptinten-
stiten & und 8", und dessen Entropiestrahlung daher die
entsprechende Intensitit @7 + @ besitzt. Dadureh wird dem
umgebenden Felde in der Zeit d¢ die Entropie:

3c¢lo
QW de S8 40
&+ 8" d¢ poed
wgefithrt. Im ganzen betrigt also die in der Zeit d¢ ein-
getretene Kutropieinderung des den Rescnator umgebenden
E‘t‘fldes, durch Subtraction des vorletzten Ausdruckes vom
letzten und Integration ober d 0:

c, et o o ;
(64) TRRS N NPT SRR 5

T o

1) Vgl hierzu W, Wien, Ann. d. Phys. 3. p. 334, 1500; 1 e 4
B 423, 1901; feruer J. D. van der Waals jr, Jubelband fir H. A
‘P(’rentz, p. 587, 1900, welche tellweise abweichende Melunungen ge-
fugsert haben. '
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Nimmt man dazu die in derselben Zeit erfolgts Entﬁ) e

anderung des Resonators: Plg.
d8 dS dl

e dt= gt
so ergiebt sich durch Addition zu (G4) und Summatigy fiber
alle Resonatoren die gesuchte Aenderung der totalen Entl‘omé

des Systems:

d‘ql . W Jeto 0 Q' Q ’ d8 !

“ -d i = rlt-‘Z_ [4“—!—1"[{[‘_(& e RS UE TS Vdﬁ[‘f'f('{(;‘ .
Wir wollen nun weiter den Nachweis fithren, dagg dex

Ausdruck hinter dem >-Zeichen stets positiv ist, inbegrifig;,

den Grenzfall Null. Zu diesem Zwecke setzen wir fir dUj

den in {40) gegebenen Wert und erhalten dadurch;

o S, . 3¢ty € v @ 4.5 Qrr s @8
P IR S el L SR

di

dS . ds
a4 Gl _y &
ST TT ”+@d(f)'

Ks eriibrigt jetzt nur noch zu zeigen, dass der eip.
geklammerte Ausdruck fiir alle beliebigen Werte der positivey
Grossen U, &, &', &, o positiv ist, wihrend nach Gleichung (38):

(65) § =QRcos?o + Fsin’o
und nach Gleichung (39):
{7 = (@sin?w + & cos?w)cos? & + %TU sin? .

Setzen wir zur Abkiirzung:

(66) Qsintw + Kcostm =R + & — § = &7,
so 1st hiernach:
(67) 7 = 8y cos? 9 + 7 sin?

Wir wollen zuniichst das Glied:

s (0S G
o & 45~ e

ins Auge fassen, indem wir darin U7 und folglich auch dSjdl
als constant, dagegen § und folglich auch € als variabel
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betrachten. Mit Beriicksichtigung von (61) und (58) ergiebt
sich dann:
af 4’ dS§
a” T odf” AU
k i v? k iy
=, o8 ((- g T 1) — iy los (7 + 1)’
df /: 1
AT T e 1 e < 0.
* hovd
Daraus folgt, dass die Function f("} ein einziges Maximum
besitzt, und zwar fir = (¥?/c?) U
Da nun nach (67) @ zwischen R, und #2 U/c? Hegt, so
ist jedenfalls:
78 > 7R,

7 ([ 6

d. h.

; LS
v Qg 48
Y ¢ o> S

ind um den Beweis durchzufiihren, geniigt es, den Ausdruck:

d S W a5 g @ d S a8

Q@ . A
R e auv TE TRy

oder, was nach (66) dasselbe ist, den Ausdruck:
(@ 4 97— (2 + 2
uls positiv zu erweisen. Hierzu wollen wir sebzen:
R+{=0"+8"=8.

& und @ liegen nach (65) und (66) zwischen § und &'

Betrachten wir jetzt die Grosse:

Q4= (Y

is Function von § allein, indem wir S constant nehmen und

dQaher @ als von Q abhanﬂw ansehen, so handelt es sich nur
" Moch um das Vorzeichen des Auadiucl\es:

PR — F(3).

; Nun erglebt sich nach (61) durch IMfferentiation:

o F I3 (et O Loy T h®
= log | I T T 1
o 1oy Doy T o Tty +
ANa I i i 1
, o= : R L
o /BTN R [N Y
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Daraus folgt, dass die Function F(R) ein einziges Maximyy,
besitzt, wvnd zwar fir § = & w(é', 2), und dass sie zu heidey,
Seiten dieses Maximums symmetrisch abfallt. Je niher also
das Argnment § dem Werte ;,, k mmt, einerlel von welchey
Seite her, desto grosser wird der Wert von £

Nun liegt & dem Werte /2, welcher das arithmetische
Mittel sowoh! von & und &, als auch von & und @ bildet,
jedenfalls niher als &, weil § und & zwischen S? und Q
liegen. Folglich ist J*(\‘ > F(%), und damit ist der Bewejg
fir die Vermebrung der hntmple geliefert.

Jeder der betrachteten Strahlungsverginge verliuft alg,
einseitig in dem Sinne wachsender Kntropie, bis mit dep
Maximum der Entropie auch der stationire Strahlungszustay
erreicht wird, welcher durch die Beziehungen charakterisirt Ist: 1)

A= =R"=/"=8"= ;D .

Betrachten wir die in dem Beweisgang benutzten Vorayg.
setzungen, so erhellt leicht, dass genau der namliche Beweis
auch in dem allgemeineren Falle gefithrt werden kounte, dass
statt der Definition (58) eine andere Definition der Entropie &
zu Grunde gelegt wiirde, falls nur stets:

Toe >0
und falls fir € als Function von & der nach der zu (61) ge.
machten Anmerkung zu berechnende Ausdruck genommen wird,
Diesen Satz habe ich schon bei einer friiheren Gelegenheit?)
ausgesprochen, ohne jedoch damals einen Beweis dafiir mit-
zuteilen.

g 29, Thermodynamische Folgerungen.

Durch Identificirung der elektromagnetischen mit der
thermischen Entropie ergiebt sich eine Reihe von thermo-
dynamischen Beziehungen, deren chhtlgste im Folgenden be-
rechuet werden sollen.

1) Eine directe, durch die Deschrinkung auf den stationfiren
Strahlungszustand bedeutend vereinfachte Ableitung dieser Beziehungen
habe ich kiivzlich in der Physikalisehen Zeitschrift, 2. p. 530. 1901, ent-
wickelt.

2) M. Planck, Ann. d. Phys. . p. 780. 1900.
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Zun#chst erbdlt man aus (58) fiir die Temperatur % eines

i monochromatisch schwingenden linearen Rescnators mit der

Energie U:
1 d .S I8 ‘v N
e T L
oder:
{ . leow
- fea
¢ B 1

und ebenso aus (61) fir die Temperatur % eines mono-
chromatischen geradlinig polarisirten Strahles mit der Inten-
sitat $B:

1 4 Y ke foa®
] =T = €L
()8) s ol & /L 10g ( g ! 1)
oder:
@ = f 1:’ o 1
e Ly
¢ g 1

Im stationiren Strahlungszustand besitzen alle Strahlen und
alle Resonatoren die namliche Temperatur. Daher ergiebt
der letzte Ausdruck die Verteilung der Energie auf alle ver-
schiedenen Schwingungszahlen 2 im Normalspectrum. Die
(resamtintensitit K der Strahlung in irgend einer Richtung ist
dann nach (25):

(o) s
- . 2h 1 %dy
A =2 / Sdv= "] / -
Is o
</ e kot —1
0 U

und durch Entwickelung des Integrandus in eine Potenzreihe

i und gliedweise Integration derselben:

- 2h A [ 1
K= Cg'-G(\—ﬁ ] {‘1+ R +)
126k 6°
T Tags
Wwobei zur Abkirzung gesetzt ist:
| 1 N
14 at + . + ... = L0823 = &,

Die riiumliche Energiedichte der (Gesamtstrahlung ist

nach (28):
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Dagegen die rdumliche Energiedichte der monochromatischey,
Strahlung von der Sechwingungszahl »:

" Sast Sahs 1
e o8 Sk

R 1

In analoger Weise lisst sich auch die Entropie § gog
Resonators und die Entropie @ der fortschreitenden Strahlung,
sowie die raumliche Enfropiedichte & der monochromatischey,
Strahlung und die raumliche Entropiedichte s der Gesami.
strahlung durch die Temperatur & aunsdriicken.

§ 80. Temperatur homocentrischer Strahlen.

Zum Schlusse berechne ich noch, den Giiltigkeitsbereich
einer frither’) von mir aufgestellten Formel erweiternd, gie
Temperatur einer monochromatischen unpolarisirten Strahlung,
die von einer kleinen Fliche (Spalt) in senkrechter Richtung
emittirt worden und durch ein beliebiges System centrirtey
brechender Kugelflichen nahe der Axe hindurchgegangen ist,
Eine solche Strahlung besteht aus homocentrischen Biindelp
und entwirft daher hinter der letzten brechenden Fliche eip
reelies oder virtuelles Bild der ersten emittirenden Fliche,
wiedernm senkrecht zur Axe.

Bezeichnet man ebenso wie frither die gesamte Intensitit
der monochromatischen Strahlung mit J/,, die Grosse der Bild-
fliche mit 7, den rdumlichen QOeffnungswinkel des in einem
Punkte des Bildes zusammentreffenden Strahlenkegels mit o,
so ist nach Gleichung (18) der ecitirten Abhandlung:

J, =28 Fw,

folglich durch Berechnung von § hieraus und Substitution in (68):

Gy 1
k ( 2hv¥ Fo
log [ =75 4 1

Wenn das Medium, in welchem die Strahlung verlauft,
nicht das Vacuum ist, sondern den Brechungsexponenten n
besitzt, so ist in dem letzten Ausdruck e/n statt ¢ zu setzen,

1) M. Planck, Ann. d. Phys. 1. p. 734. 1900,



Irreversible Strahlungsvorginge. 831

und man erhilt, mit Einsetzung von ¢=3.101, sowie der
Werte von 4 und £ aus (B9):

0,487.10-10
. b o~ Grad Cals.
v 146.10-47. 2 F o Grad Cels
log -2 =7 - Lieei— 1)
Jy

Hierbei ist der natirliche Liogarithmus zu nehmen, und
J, ist in erg, o in reciproken Secunden, /£ in Quadratcenti-
metern auszudriicken.

Diese Formel giebt die absolute Temperatur eines mono-
chromatischen Strahles fiir jede Intensitit und jede Wellen-
lange. Doch wird man bei sichtbaren Strahlen den Summanden 1
im Nenner fast immer weglassen konnen; dann reducirt sich
die Formel auf die frither angegebene.

(Eingegangen 16. October 1901.}



