PHILIPS-BERLIN

Tragbare UKW-Sende-Empfangsanlage
Phi 1 UK 43
(Baumuster DR 25 B 1 X)

Beschreibungsnummer 2747 D
Ausgabe 3000/801
INHALT

I. Allgemeiner Aufbau .. 1
II. Arbeitsweise .. 2
III. Betriebsanweisung ... 3
IV. Instandhaltung .. 4
V. Betriebsstörungen und deren Beseitigung 5
VI. Schaltbild und Zeichnungen 6
VII. Stückliste .. 6
Tragbare UKW-Sende-Empfangsanlage
Phi 1 UK 43

I. ALLGEMEINER AUFBAU

1. Verwendungszweck
 Funk sprechgerät für die Ueberbrückung geringer Abstände.

2. Zusammensetzung der Gesamtanlage
 Kombinierte Sende-Empfangsanlage, bestehend aus folgenden Teilgeräten:
 A. Sender-Empfänger, bestehend aus:
 a. Sender-Empfänger
 b. Heiz- und Anodenbatterien
 c. Kopfhörer
 d. Mikrofon
 e. Viertelwellen-Stabantenne (1,75 m)
 f. Halbwellen-Drahtantenne (2,40 m)

3. Stromversorgung
 Die Spelssung erfolgt durch die im Sender-Empfängerkasten eingebauten Tröckenspeisung.
 Batterien oder durch das Universal Speisungsgerät Type U.O.R.1.
 Anodenspeisung
 150 V-Batterie; Stromentnahme etwa 40 mA bei Senden; etwa 10 mA bei Empfang.

4. Dauerbetrieb
 Bei Dauerbetrieb genügen die Heizbatterien, um die Anlage 1½ Stunden ununterbrochen zu betreiben. Die Anodenbatterie verträgt einen längeren Dauerbetrieb.

5. Leistung
 Die mittlere Leistung im Antennenkreis beträgt etwa 1 W.
 Die Power-Leistung beträgt:
 a. 0,3 A bei 4,5 V
 b. 40 mA bei 150 V für „Senden“
 c. 10 mA bei 150 V für „Empfangen“.

6. Betriebsart
 Die Anlage ist nur für Funk sprechbetrieb (A3) eingerichtet.

7. Frequenzbereich
 Die Frequenz ist veränderlich von 37,5—46,2 MHz (8—6,5 m). Die Abstimmung ist in Graden (90—340°) und in Kanälen geeignet.

8. Röhrenbestückung
 Doppeldreipolrohre KDD 1 = 2 Stück (L 1, L 2).
 Penthode DF 25 = 2 Stück (L 3, L 4).

9. Zubehör
 Kopfhörer
 Mikrofon
 Eichkenn und Abstimmtabelle (im Deckel befestigt)
 1 Teleskopstabantenne
 1 Rolle Antennendraht mit Steckern.
10. Antennen
Die Anlage ist mit zwei Antennen versehen:
 a. einer \(\frac{1}{4} \) \(\lambda \) Teleskopstabantenne, die an das Gerät zu befestigen ist.
 b. einer \(\frac{1}{2} \) \(\lambda \) Drahtantenne (Draht- mit Stabantenne verbunden).

11. Mechanische Ausführung (siehe Zeichnungen 1B 60432—1B 60433).
Der Kasten ist auf einem Traggestell befestigt. Der Sender-Empfängerraum ist mit einer Folie ausgeschlagen. Die Bedienungsknöpfe sind auf der Frontplatte angeordnet. Der Anschluss der Batterien erfolgt mittels eines 4-adrigem Kabels und eines Vierpolsteckers an der Vorderseite des Gerätes.

12. Abmessungen

<table>
<thead>
<tr>
<th>Sender-Empfängerkasten</th>
<th>mm</th>
<th>300</th>
<th>410</th>
<th>355</th>
</tr>
</thead>
</table>

13. Gewichte
Sender-Empfängerkasten 15 kg (einschliesslich Gerät und Batterien).

II. ARBEITSWEISE
(Siehe Zeichnung 1B 60481).

1. Oszillator-Detektorteil

Falls eine Halbwellen-Antenne aus praktischen Gründen nicht in Frage kommt, oder wenn eine kleinere Reichweite erwünscht ist, so kann auch eine Vierpolwellenantenne verwendet werden. Diese wird dann über den Schalter (SR 2 — SR 2a) und den Kondensator (C 1) mit dem Oszillorkreis verbunden. (Antennenbuchse „S").

In der Stellung „Empfang“ des Sende-Empfangsschalters (SR 2 — SR 2a) wird das über „S“ oder „D“ ankommende Signal dem Gitterkreis der Röhre (L 3) zugeführt und die Anode dieser Röhre mit dem Anodenkreis der Röhre (L 1) verbunden. Die Röhren (L 3) arbeitet als apodischer HF-Verstärker und soll die unerwünschte Ausstrahlung des superregenerativen Detektors unterdrücken. Eine Verstärkung wird hierbei praktisch nicht erzielt. Der Gitterkreis ist apodisch und wird von der Spule (S 3) mit parallelgeschaltetem Widerstand (R 8) gebildet. Die Vorspannung wird über den Gitterableitwiderstand (R 7) der Röhre zugeführt. Der Kondensator (C 20) und die Drosselspule (SS 2) dienen der Entkopplung des Halbkreises. Das Schirmgitter wird über einen Widerstand (R 6), welcher durch den Kondensator (C 15) entkoppelt ist, gespeist. Die Anodenspannung wird über die Widerstände (R 16 und R 17), die Sekundärwicklung des Mikrofontransformators (TR 3), die Drosselspule (SS 1) und die Anodenspule (S 1), der Röhre zugeführt. Der Kondensator (C 2) dient der Entkopplung. Die Sekundärwicklung des Mikrofontransformators (TR 3) dient zugleich als NF-Koppelglied.
Dem Anodenkreis der Detektorröhre (L 1) ist ein Korrekutionskondensator (C 4) parallelgeschaltet. Beim Umschalten von „Senden“ auf „Empfangen“ ändert sich die Abstimmung (C 3) nicht; die Feinabstimmung erfolgt nur mit dem durch „Korrektion“ bezeichneten Kondensator (C 4). Damit die Abstimmung in der Stellung „Senden“ durch den Kondensator (C 4) nicht beeinflusst wird, ist er in diesem Fall kurzgeschlossen.

2. Modulator-NF-Verstärkerteil

In der Stellung „Senden“ wird die Mikrofonspannung, welche der Heizbatterie entnommen wird, von dem Schalter (SR 2 — SR 2a) eingeschaltet. Die an der Sekundärwicklung auftretenden Wechselspannungen werden über den Kopplungskondensator (C 16) und den Stebkreis (R 13, R 14, C 17, C 18) dem Gitter der Vorverstärkerröhre (L 4) zugeführt. Letztgenannter Stebkreis hat den Zweck, die Röhre (L 4) für die Pendelfrequenz zu sperren.

Mittels des Widerstandes (R 15) erhält das Gitter eine negative Verspannung. Die Widerstände (R 12 und R 18) setzen die Heizspannung für die Röhre (L 4) auf den richtigen Wert herab.

Die Anode der Röhre (L 4) wird über die Primärwicklung des Gegentakteingangstransformators gespeist (TR 1). Da die Röhre (L 2) keine negative Gittervorspannung benötigt, ist die Mittelanzapfung der Sekundärwicklung des Transformators (TR 1) direkt an Erde gelegt.

Die Sekundärwicklung steuert die Doppeldreipolröhre (L 2) (B-Verstärker), während der Transformator (TR 2), je nach Betriebsart, entweder als Ausgangs- oder als Modulationstransformator dient. Im letzteren Falle geschieht die Anodenspeisung der Oszillatorröhre über die Sekundärwicklung des Transformators (TR 2). In der Stellung „Empfang“ dient der Kondensator (C 21) der Fernhaltung der Anodengleichspannung vom Kopfhörer. Die Lautstärke im Kopfhörer kann mittels des Lautstärkereglers (Potentiometer R 2) auf der Frontplatte beliebig eingestellt werden.

Ein- und Ausschaltung der Anlage erfolgt mittels des Schalters (SR 1).

Mithören

Beim Besprechen kann die Qualität im eigenen Kopfhörer abgehört werden.

III. BETRIEBSANWEISUNG

A. Aufstellung der Anlage

a. Es ist zu beachten dass zwei in geringer Entfernung von einander arbeitende Sprechstellen etwa 80 m (für Stabantenne) bzw. 200 m (für Drahtantenne) auseinander entfernt sein müssen, um mit einer schwach einfallenden dritten Sprechstelle einwandfrei arbeiten zu können.

b. Das Gerät wird aufgestellt.

d. Mit dem Regler (R 2) rechts neben dem Abstimmknopf ist die Lautstärke beliebig einzustellen.

Anordnung der beiden Antennen: Siehe Zeichnung 1B 60483.

B. Bedienungsanweisung

a. Senden

1. Der Sende-Empfangsschalter (SR 2) wird auf „SENDEN“, der Ein-Ausschalter (SR 1) auf „EIN“ gestellt.

b. Empfang
1. Der Sende-Empfangsschalter (SR 2) wird auf „EMPF“, der Ein-Ausschalter auf „EIN“ gestellt. Im Kopfhörer ist nun ein Rauschen wahrzunehmen.
4. Die Lautstärke kann am Regler beliebig eingestellt werden.

ACHTUNG:
Der Verschluss kann nur erfolgen, wenn der Schalter (SR 1) auf „AUS“ gestellt ist; in der Betriebstellung „EIN“ schliesst der Deckel nicht.

IV. INSTANDHALTUNG

a. Auswechslung der Batterien
Bei Erneuerung der Batterien sind die Ober- und Unterdeckel an der Vorderseite des Gerätes zu öffnen. Die Metallplatte, auf der die Batterien aufgestellt sind, kann mittels zweier Handgriffe nach vorn gezogen werden. Die drei einzusetzenden Helzbatterien werden mittels der festen Verbindungen parallel geschaltet.
Die vier Adern des Batteriekabels sind wie folgt bezeichnet:

<table>
<thead>
<tr>
<th>Helzbatterie:</th>
<th>positiv = rot</th>
</tr>
</thead>
<tbody>
<tr>
<td>negativ = weiss</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Anodenbatterie:</th>
<th>positiv = rot</th>
</tr>
</thead>
<tbody>
<tr>
<td>negativ = schwarz</td>
<td></td>
</tr>
</tbody>
</table>

b. Auswechslung der Oszillatoröhre
Die Frequenzkontrolle muss auf mehreren Frequenzen geschehen.

c. Prüffeldangaben
Zur Nachprüfung des Empfängers genügt das Zuführen einer HF-Spannung von 40 Mikrovolt (1000 Hz, 30% Modulation) an die Klemme S; es muss sich dann eine Ausgangsspannung von etwa 4 V an den Telefonbuchen (Belastung 4000 Ohm) messen lassen (entsprechende Ausgangsleistung 5 mW). Hierbei soll der Empfänger ungefährt auf Skalenmitte abgestimmt sein.
Das Arbeiten des Empfängers lässt sich auch am starken Rauschen erkennen, sofern dem Empfänger keine Trägerwelle zugeführt wird.
Zur Prüfung des Senders dienen folgende Angaben:
Mit dem auf Bereichmitte abgestimmten Sender wird mit einem Thermosteinstellung
von 5,2 Ohm ein HF-Strom von ± 70 mA zwischen Stab- und Drahtantenne (unbe- sprochen) gemessen.
Für eine 30%-ige Modulationstiefe ist an den Mikrofoneingangsbuchsen (270 Ohm) eine Spannung von 0,25 V bei 1000 Hz erforderlich.

d. Mittlere Messwerte (Gemessen mit Philips Universal Messinstrument; R = 666 Ohm pro Volt)

<table>
<thead>
<tr>
<th>Senden</th>
<th>L1</th>
<th>L2</th>
<th>L3</th>
<th>L4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Heizspg. pro Röhre</td>
<td>2,2</td>
<td>2,2</td>
<td>1,4</td>
<td>1,4 V</td>
</tr>
<tr>
<td>Heizbatt. spg.</td>
<td>4,5 V</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mikrofonstrom</td>
<td>30 mA</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gesamtstrom Heizbatterie</td>
<td>0,3 A</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Anodenspannung</td>
<td>135 V</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Anodenstr. pro Röhre</td>
<td>32,5</td>
<td>4,5</td>
<td>—</td>
<td>0,75 mA</td>
</tr>
<tr>
<td>Schirmgitterstr.</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>0,15 mA</td>
</tr>
<tr>
<td>Gesamtstr. Anodenbatt.</td>
<td>40 mA</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Empfangen</th>
<th>L1</th>
<th>L2</th>
<th>L3</th>
<th>L4</th>
</tr>
</thead>
<tbody>
<tr>
<td>—</td>
<td>4,5 V</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>—</td>
<td>0,3 A</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>—</td>
<td>135 V</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>4,5</td>
<td>0,75</td>
<td>0,75 mA</td>
<td></td>
</tr>
<tr>
<td>—</td>
<td>—</td>
<td>0,15</td>
<td>0,15 mA</td>
<td></td>
</tr>
</tbody>
</table>

V. BETRIEBSSSTÖRUNGEN UND DEREN BESEITIGUNG

Nachstehend sind einige Störungsursachen aufgeführt und Mittel zu ihrer Beseitigung angegeben.

<table>
<thead>
<tr>
<th>Störung</th>
<th>Ursache</th>
<th>Beseitigung</th>
</tr>
</thead>
<tbody>
<tr>
<td>der Sender arbeitet nicht</td>
<td>die Schalter SR 2 und SR 1 sind nicht eingeschaltet</td>
<td>Batterien verbraucht</td>
</tr>
<tr>
<td>Krachen im Kopfhörer</td>
<td>Schlechte Anschlüsse</td>
<td>Sämtliche Anschlüsse nach der Antenne nachsehen und Fehler beseitigen.</td>
</tr>
<tr>
<td>Kein Empfang</td>
<td>Falsche Schalterstellung; Batterien oder Röhren verbraucht</td>
<td>Schalter SR 2 auf Empfang stellen, Batterien und Röhren prüfen und evtl. erneuern.</td>
</tr>
<tr>
<td>Schlechte Verständigung</td>
<td>Mikrofon oder Telefon defekt</td>
<td>Mikrofon oder Telefon prüfen bzw. auswechseln, Lautstärkeregler betätigen.</td>
</tr>
</tbody>
</table>
VI. SCHALTBILD UND ZEICHNUNGEN

Anl. 1. Schaltbild Sende-Empfangsanlage (Zeichn. IB 60481).
Anl. 2. Aufbau der Sende-Empfangsanlage (Zeichn. IB 60482).
Anl. 3. Maszskizzen und Antennenanordnung (Zeichn. IB 60483).
Anl. 4. Untertellskizzen (Zeichn. IB 60484).

VII. STUZCKLISTE

<table>
<thead>
<tr>
<th>Pos.</th>
<th>Bezeichnung</th>
<th>Elektr. Wert</th>
<th>Firmenkennzeichen</th>
</tr>
</thead>
<tbody>
<tr>
<td>C 1</td>
<td>Keramischer Rohrkondensator</td>
<td>100 pF ± 10% bet. Spg. 600 V = 1100 V</td>
<td>Philips 49 072 10</td>
</tr>
<tr>
<td>C 2</td>
<td>Papier-Rohrkondensator (Tropenausführung)</td>
<td>2000 pF ± 10% bet. Spg. 250 V = 250 V</td>
<td>Philips 49 147 07</td>
</tr>
<tr>
<td>C 3</td>
<td>Drehkondensator</td>
<td>3 pF (Min.); 15 pF (Max.); 700 V</td>
<td>Volt XU 011 36</td>
</tr>
<tr>
<td>C 4</td>
<td>Trimmer</td>
<td>2,5 pF (Min.); 5 pF (max.); 1000 V</td>
<td>Volt XU 011 34</td>
</tr>
<tr>
<td>C 5</td>
<td>Trimmer</td>
<td>2,5 pF (Min.); 5 pF (max.); 1000 V</td>
<td>Volt XU 011 33</td>
</tr>
<tr>
<td>C 6</td>
<td>Keramischer Rohrkondensator</td>
<td>200 pF ± 10% bet. Spg. 600 V = 600 V</td>
<td>Philips 49 072 14</td>
</tr>
<tr>
<td>C 7</td>
<td>Papier-Rohrkondensator (Tropenausführung)</td>
<td>2000 pF ± 10% bet. Spg. 250 V = 250 V</td>
<td>Philips 49 174 07</td>
</tr>
<tr>
<td>C 8</td>
<td>Trockenelektrolytkondensator</td>
<td>50 Mikrofarad, 12,5 V</td>
<td>Philips 49 020 01</td>
</tr>
<tr>
<td>C 9</td>
<td>Becher-Kondensator (zweiteilig)</td>
<td>je 1 Mikrofarad ± 10% bet. Spg. 200 V = 200 V</td>
<td>Philips 49 205 89</td>
</tr>
<tr>
<td>C 10</td>
<td>Keramischer Rohrkondensator</td>
<td>100 pF ± 10% bet. Spg. 600 V = 600 V</td>
<td>Philips 49 072 10</td>
</tr>
<tr>
<td>C 11</td>
<td>Keramischer Rohrkondensator</td>
<td>47 pF ± 10% bet. Spg. 600 V = 600 V</td>
<td>Philips 49 076 08</td>
</tr>
<tr>
<td>C 12</td>
<td>Keramischer Rohrkondensator</td>
<td>10000 pF ± 10% bet. Spg. 110 V = 110 V</td>
<td>Philips Z1 035 44</td>
</tr>
<tr>
<td>C 13</td>
<td>Keramischer Rohrkondensator</td>
<td>250 pF ± 10% bet. Spg. 600 V = 600 V</td>
<td>Philips 49 070 47</td>
</tr>
<tr>
<td>C 14</td>
<td>Keramischer Rohrkondensator</td>
<td>25 pF ± 10% bet. Spg. 600 V = 600 V</td>
<td>Philips 49 070 33</td>
</tr>
<tr>
<td>C 15</td>
<td>Papier-Rohrkondensator (Tropenausführung)</td>
<td>10000 pF ± 10% bet. Spg. 110 V = 110 V</td>
<td>Philips Z1 035 44</td>
</tr>
<tr>
<td>C 16</td>
<td>Papier-Rohrkondensator (Tropenausführung)</td>
<td>39000 pF ± 10% bet. Spg. 400 V = 400 V</td>
<td>Philips 49 130 44</td>
</tr>
<tr>
<td>C 17</td>
<td>Keramischer Rohrkondensator</td>
<td>10 pF ± 2,5% Prüfspg. 1500 V</td>
<td>Philips 49 073 01</td>
</tr>
<tr>
<td>C 18</td>
<td>Keramischer Rohrkondensator</td>
<td>10 pF ± 2,5% Prüfspg. 1500 V</td>
<td>Philips 49 073 01</td>
</tr>
<tr>
<td>Pos.</td>
<td>Bezeichnung</td>
<td>Elektr. Wert</td>
<td>Firmenkennzeichen</td>
</tr>
<tr>
<td>------</td>
<td>-------------------</td>
<td>-------------------------------</td>
<td>-------------------</td>
</tr>
<tr>
<td>R 1</td>
<td>Kohlewiderstand</td>
<td>(6800) Ohm ± 10% 1 W</td>
<td>Ph. 48 424 10-6K8</td>
</tr>
<tr>
<td>R 2</td>
<td>Kohlewiderstand</td>
<td>(10000) Ohm, lin. 0,4 W</td>
<td>Ph. 49 470 14</td>
</tr>
<tr>
<td>R 3</td>
<td>Kohlewiderstand</td>
<td>(0,68) Mohm ± 10% 0,5 W</td>
<td>Ph. 48 423 10-680K</td>
</tr>
<tr>
<td>R 4</td>
<td>Kohlewiderstand</td>
<td>(0,22) Mohm ± 10% 0,25 W</td>
<td>Ph. 48 423 10-220K</td>
</tr>
<tr>
<td>R 5</td>
<td>Kohlewiderstand</td>
<td>(0,33) Mohm ± 10% 0,25 W</td>
<td>Ph. 48 422 10-330K</td>
</tr>
<tr>
<td>R 6</td>
<td>Kohlewiderstand</td>
<td>(0,22) Mohm ± 10% 0,25 W</td>
<td>Ph. 48 422 10-220K</td>
</tr>
<tr>
<td>R 7</td>
<td>Kohlewiderstand</td>
<td>(2200) Ohm ± 10% 0,25 W</td>
<td>Ph. 48 422 10-2K2</td>
</tr>
<tr>
<td>R 8</td>
<td>Kohlewiderstand</td>
<td>(22) Ohm ± 10% 0,25 W</td>
<td>Ph. 48 422 10-22E</td>
</tr>
<tr>
<td>R 9</td>
<td>Kohlewiderstand</td>
<td>(120) Ohm ± 10% 0,25 W</td>
<td>Ph. 48 422 10-120E</td>
</tr>
<tr>
<td>R 10</td>
<td>Kohlewiderstand</td>
<td>(1) Mohm ± 10% 0,25 W</td>
<td>Ph. 48 422 10-100K</td>
</tr>
<tr>
<td>R 11</td>
<td>Kohlewiderstand</td>
<td>(560) kOhm ± 10% 0,5 W</td>
<td>Ph. 48 423 10-560K</td>
</tr>
<tr>
<td>R 12</td>
<td>Kohlewiderstand</td>
<td>(12000) Ohm ± 10% 0,5 W</td>
<td>Ph. 48 423 10-12K</td>
</tr>
<tr>
<td>R 13</td>
<td>Kohlewiderstand</td>
<td>(6800) Ohm, 0,25 W</td>
<td>Ph. 48 422 10-6K8</td>
</tr>
<tr>
<td>R 14</td>
<td>Kohlewiderstand</td>
<td>(1000) Ohm, 0,25 W</td>
<td>Ph. 48 422 10-1K</td>
</tr>
</tbody>
</table>

TR 1 NF-Transformator
Induktivität
- Prim. 2 Spulen je 7300 Wdg;
- Cu Em 0,05 Ø
- H-G=35 H ± 20%
- 7100 Ohm ± 10%
- Sek. 2 Spulen je 2000 Wdg;
- Cu Em 0,1 Ø
- D-C=560 Ohm ± 10%

TR 2 Mod. Transformator
Induktivität
- Prim. 2 Spulen je 2250 Wdg;
- Cu Em 0,1 Ø
- A-B=170 Ohm ± 10%
- 7 H ± 20%
- Sek. 2 Spulen je 2060 Wdg;
- Cu Em 0,12 Ø
- D-F=480 Ohm ± 10%
- 2,2 H ± 20%

TR 3 Mikrofontransformator
Induktivität
- Prim. 3700 Wdg;
- Cu Em 0,1 Ø
- 4,3 H ± 20%
- 660 Ohm ± 10%
- Sek. 270 Wdg;
- Cu Em 0,1 Ø
- 56 Ohm ± 10%

Philips NA 035 18
Philips NA 032 57
N.S.F. NA 033 52
<table>
<thead>
<tr>
<th>Pos.</th>
<th>Bezeichnung</th>
<th>Elektr. Wert</th>
<th>Firmenkennzeichen</th>
</tr>
</thead>
<tbody>
<tr>
<td>S1-S2</td>
<td>HF-Spule, zusammen montiert</td>
<td>ca. 120 Wdg; Cu Em 0,05 Ω je 4 Wdg. Cu. verz. 1,5 Ω</td>
<td>Volt XU 026 00</td>
</tr>
<tr>
<td>SS 1</td>
<td>Drossel</td>
<td>ca. 70 Wdg; Cu Em 0,5 Ω</td>
<td>N.S.F. NA 107 60</td>
</tr>
<tr>
<td>SS 2</td>
<td>Drossel</td>
<td>3+4 Wdg; Cu Em 2 × Selde 0,4 Ω</td>
<td>N.S.F. 1B 244 10</td>
</tr>
<tr>
<td>SR 1</td>
<td>Ein-Aus-Schalter</td>
<td>2-pol.</td>
<td>N.S.F. 1B 264 49</td>
</tr>
<tr>
<td>SR 2</td>
<td>Sende-Empfangsschalter</td>
<td>Druckrolltype 6-pol.</td>
<td></td>
</tr>
<tr>
<td>SR 2a</td>
<td>Sende-Empfangsschalter</td>
<td>Druckrolltype 4-pol.</td>
<td></td>
</tr>
<tr>
<td>L 1</td>
<td>Röhre KDD 1</td>
<td>Doppeldreipolröhre</td>
<td>Phillips</td>
</tr>
<tr>
<td>L 2</td>
<td>Röhre KDD 1</td>
<td>Doppeldreipolröhre</td>
<td>Phillips</td>
</tr>
<tr>
<td>L 3</td>
<td>Röhre DF 25</td>
<td>HF-Verstärker</td>
<td>Phillips</td>
</tr>
<tr>
<td>L 4</td>
<td>Röhre DF 25</td>
<td>NF-Verstärker</td>
<td></td>
</tr>
<tr>
<td>Mikr.</td>
<td>Kohlendruckfoni</td>
<td>4000 Ohm Gleichstromwiderstand</td>
<td></td>
</tr>
<tr>
<td>Tel.</td>
<td>Telefon</td>
<td>loser Draht</td>
<td>N.S.F. NA 385 93</td>
</tr>
<tr>
<td>Ant.</td>
<td>Antenne</td>
<td>Länge 2,40 m</td>
<td>N.S.F. 1B 245 04</td>
</tr>
<tr>
<td>Ant.</td>
<td>Teleskop-Stabantenne</td>
<td>Länge 1,75 m</td>
<td></td>
</tr>
<tr>
<td>B 1</td>
<td>Anodenbatterie</td>
<td>150 V, Abm. 237 × 160 × 75</td>
<td>Type WK Spez.</td>
</tr>
<tr>
<td>B 2</td>
<td>Helzbatterie (3 Stück par.)</td>
<td>4,5 V, Abm. 100 × 35 × 76</td>
<td>Type WK 62</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
SCHALTBILD DER SENDE-EMPFANGS-
ANLAGE PHI 1 UK 43
MASZSKIZZEN UND ANTENNEANORD-NUNG DER SENDE-EMPFANGSANLAGE
PHI 1 UK 42

(SECHSMETER DR 238 1 X)