AS 4
Anflugführungssender 4
Geräte-Handbuch

Juni 1943
Diese Druckschrift D. (Luft) T. 4456 „AS 4 — Anflugführungssender 4, Geräte-
Handbuch, Juni 1943“ —, ist geprüft und gilt als Dienstanweisung.
Sie tritt mit dem Tage der Herausgabe in Kraft.

I. A.
Vorwald
Inhalt

I. Allgemeines .. 5
 A. Verwendungszweck .. 5
 B. Arbeitsweise ... 5
 C. Technische Angaben 7
 D. Maße, Gewichte und Anforderzeichen 9

II. Beschreibung ... 11
 A. Äußerer Aufbau ... 11
 1. Geräteaufbau ... 11
 2. Antennenanlage ... 15
 B. Wirkungsweise .. 15
 1. Der Hochfrequenzgenerator 15
 2. Die Modulationsanordnung 16
 3. Die Tasteinrichtung 17
 4. Die Energieversorgung und Schutzvorrichtungen 17

III. Betriebsvorschrift .. 20
 A. Inbetriebnahme .. 20
 B. Außerbetriebsetzung 20
 C. Erstabstimmung ... 20
 D. Betriebsüberwachung 22
 E. Die Neutralisation 24

IV. Stückenisten ... 25
 A. UKW-Sender AS 4 ... 25
 B. Netzanschlußgerät 31

Abbildungen, Zeichnungen und Anlagen

Zehng. 1: Ansteuerung des Landefunkfeuers 5
Zehng. 2: Entstehung des Leitstrahles 6
Abb. 3: Sender Vorderansicht 11
Abb. 4: Sender und Netzanschlußgerät 12
Abb. 5: Sender geöffnet 12
Abb. 6: Sender Rückansicht geöffnet 13
Abb. 7: Netzanschlußgerät 14
Abb. 8: Sender Vorderansicht ohne Deckplatten 20
Anlage 1: Stromlaufplan des Anflugführungssenders AS 4
Anlage 2: Stromlaufplan des Netzanschlußgerätes
I. Allgemeines

A. Verwendungszweck

Der Einsatz des UKW-Senders 500 Watt erfolgt im Zusammenhang mit der Antenne AFFA 2 vorwiegend für Anflug-Führungsanlage des UKW-Landefunkfeuers.

Darüber hinaus kann der Sender im Zusammenhang mit der Antenne AFFA 2 benutzt werden, um mit gebündelter Strahlung und Kennung ein Flughindernis zu kennzeichnen, wie z. B. die Alpenkette, die nur in einer bestimmten Sicherheitshöhe überflugen werden darf. Mit Rundstrahl-Antenne wird der Sender AS 4 in der UKW-Bodenorganisation für Telefonieverkehr und für weitere Sonderaufgaben eingesetzt.

B. Arbeitsweise

Zwisch. 1: Aufstellungsplan für ein motorisiertes Landefunkfeuer
Zehn. 2: Entstehung des Leitstrahles
C. Technische Merkmale

Zu dem Anflugführungssender gehört die Antenne AFFA 2, die in der D. (Luft) T. 4454 „Antenne AFFA 2, Geräte-Handbuch, September 1942“ beschrieben ist.

Der fahrbare 500 Watt-Ultrakurzwellen-Anflugführungssender ist als fünfstufiger Sender aufgebaut und für den Betrieb aus einem 50 Hz-Drehstromnetz von 3×380 Volt oder 3×220 Volt bestimmt. Bei geregelter Spannung beträgt die aus dem Netz aufgenommene Leistung etwa 5 kW.

1. Hochfrequenztechnische Kennzeichen

a) Gliederung des HF-Generators

aa) Senderstufe 1 Quarzgesteuerter Einröhren-Oszillator, der in der Frequenz (\(f_Q \)) des Steuerquarzes schwingt (Grundfrequenz); Frequenzhaltung wird gewährleistet im Temperaturbereich —20°C bis +35°C durch Wärmehaltung des Quarzes auf etwa +58°C

bb) Senderstufe 2 Zweiröhren-Frequenzverdoppler (doppelte Grundfrequenz)

c) Senderstufe 3 Zweiröhren-Frequenzverdoppler (vierfache Grundfrequenz = Trägerfrequenz \(f \))

dd) Senderstufe 4 Zweiröhren-Gegentakt-Anordnung zur Spannungsverstärkung der Trägerfrequenz \(f \)

e) Senderstufe 5 Zweiröhren-Gegentakt-Leistungsverstärker für die Sendefrequenz \(f \).

b) Erzeugung der Trägerfrequenz \(f \)

Durch Vervierfachung (zweimalige Verdopplung) der quarkstabilisierten Grundfrequenz. Der Trägerschwingung wird in der Sender-Endstufe die Modulationsspannung aufgeprägt.
c) Einschaltzeit etwa 70 Sekunden
d) Einlaufzeit auf Betriebsfrequenz etwa drei Minuten.
e) Amplitudenkonstanz der (modulierten) Senderausgangsspannung:
 Bei normaler Netzspannung etwa ± 10% innerhalb des Temperaturbereichs
 −20° C bis +35° C.
f) Schwingleistung im Antennenkreis:
 Bei 90%iger Aussteuerung etwa 500 Watt bei Normalspannung,
 etwa 300 Watt bei 10% Unterspannung.

2. Tonfrequenzmodulation

a) Modulationsverfahren:
 Tonfrequenzmodulation mittels Einröhren-Parallel-Modulators in der Sender-End-
 stufe (sog. Anodenspannungs-Modulation).
b) Erzeugung der Modulationsspannung:
 Mittels der in Sender (Tastteil) eingebauten Tonfrequenzmaschine, die den Gitter-
 kreis des Modulators mit Tonspannung speist.
c) Modulationsfrequenz:
 \[f_M = 1150 \text{ Hz} \pm 10 \% \]
d) Modulationsgrad:
 Veränderbar; im normalen Sendebetrieb: 90% ± 5%

3. Tastung

Vollautomatische Wechseltastung der Reflektorrelais in der Antennenanlage mittels im
Sender eingebauter Tastmaschine und -Relais nach dem Punkt-Strich-Verfahren; wobei
das Zeitverhältnis von Punkt zu Strich 1 : 7 und die Tastfrequenz 1 Hz ± 10% betragen.

4. Energieversorgung

Anschluß an 50 Hz-Drehstromgenerator des schweren Maschinensatzes „A“ oder Orts-
netz mit 3×220 V bzw. 3×380 V verketteter Spannung; hierbei Stromaufnahme etwa
11,5 A bzw. 6,5 A bei weniger als 5 kVA Scheinleistung.

Für den Sendebetrieb erforderliche Gleichspannungen werden Trockengleichrichtern
entnommen, wobei schaltungs-technische Schutzmaßnahmen die betriebssichere Arbeits-
weise des Anflugführungssenders gewährleisten.

Die Netzspannung darf sich um ± 10% ändern. Der eingebaute Pintsch-Regler regelt
 diese Spannungsänderung auf ± 3% aus. Wird dieser Bereich überschritten, so setzt
über Automat (28) der Regler den Sender außer Betrieb. Am Heizspannungsmesser
(23) kann die Spannungsregelung abgelesen werden, wenn der Zeiger sich den
Grenzen des roten Sektors nähert, was einem Wert von 22,3 bzw. 23,7 Volt entspricht.
Um diese Über-bzw. Unterspannungen auszugleichen, muß der Eingangstransformator
(3) im Netzanschlußgerät an den Klemmen mit der Bezeichnung „Spannung wird höher“
bzw. „Spannung wird niedriger“ entsprechend umgeklemmt werden, bis Instrument (23) wieder 23 Volt zeigt.

D. Maße, Gewichte und Anforderzeichen

1. Gehäusemaße

<table>
<thead>
<tr>
<th></th>
<th>Höhe</th>
<th>Breite</th>
<th>Tiefe</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sender</td>
<td>1140</td>
<td>1210</td>
<td>706</td>
</tr>
<tr>
<td>Netzanschlußgerät</td>
<td>672</td>
<td>1830</td>
<td>496</td>
</tr>
</tbody>
</table>

2. Gewicht

<table>
<thead>
<tr>
<th></th>
<th>Gewicht</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sender</td>
<td>402 kg</td>
</tr>
<tr>
<td>Netzanschlußgerät</td>
<td>340 kg</td>
</tr>
</tbody>
</table>

Anflugführungssender

Lieferungsgegenstand

Anflugführungssender
Kurzzeichen: AS 4
Anforderzeichen: Ln 22 110

Gewicht: 402 kg
Maßstab: 1 : 25
Netzanschlußgerät

Lieferungsgegenstand
Netzanschlußgerät
Kurzzeichen: NA.500
Anforderzeichen: Ln 22111

Einzüge

Gewicht: 340 kg
Maßstab: 1 : 20

Verbindungsleitung

Lieferungsgegenstand
Verbindungsleitung
Kurzzeichen:......
Anforderzeichen: Ln 22113

Netzanschlußgerätseite

Gewicht: 14 kg
Maßstab: 1 : 7,5
II. Beschreibung

A. Äußerer Aufbau

1. Geräteaufbau

Der Sender gliedert sich in: (vgl. Ln-Blatt und Abbildungen)

a) Senderoberteil
b) Senderunterteil
 aa) Tastteil
 bb) Netzteil
c) Netzanschlußgerät

Abb. 3: Sender-Vorderansicht

Das Netzanschlußgerät ist vom Sender getrennt aufgebaut.

a) Das Sender-Oberteil gliedert sich in zwei Kammern; in der linken Kammer sind die Stufen 1—4 und in der rechten die Senderstufe 5 mit Modulator sowie die Antennenabstimmungs- und Kopplungsmittel untergebracht. An den Frontplatten beider Kammern sind die Bedienungsorte für die Abstimmungs- und Kopplungsvorrichtungen hinter abnehmbaren Abdeckplatten zugänglich. Im linken Bedienungsfeld befindet sich ferner das Schauzeichen (64) zur Überwachung der Quarzbeheizung und neben diesem der Rastenschalter (60) für die stufenweise Einschaltung des Emissionsstrom-Instrumentes (61).

Die hinter den Durchbrüchen der rechten Frontplatte sichtbaren Instrumente entsprechen den Pos. 68, 78, 89 und stellen in dieser Reihenfolge den Aussteuerungs-

b) Das Sender-Unterteil umfaßt zwei ausziehbare Winkelgestelle. Im linken ist das Tastteil, im rechten das Netzteil untergebracht (siehe Abb. 5).

Unter dem Schnappdeckelverschluß ist die Relaisanordnung (22) zur Tastung der Reflektoren zugänglich.

Über der Relaisanordnung befindet sich links der Reflektorschalter (20) zur Überprüfung des Strahlungsfeldes, rechts die Kontrollompe (18), die im Tastrhythmus aufleuchtet.

bb) Netzteil

Im Netzteil sind die Hauptschaltaggregate, Meßinstrumente für Netzspannung, Netzstrom und Heizspannungen untergebracht. Oben links befindet sich der

Abb. 6: Sender Rückansicht geöffnet

c. Das Netzanschlußgerät (siehe Abb. 7)

![Abb. 7: Netzanschlußgerät](image)

Das Netzanschlußgerät umfaßt den Eingangstransformator (3) mit Pintsch-Regler (3) und dazugehörigen Gleichrichter (54), die einzelnen Anodenspannungs- und Hilfsspannungsgleichrichter mit der Verzögerungseinrichtung zur Einschaltung der Anodenspannungen. Die einzelnen Gleichspannungen, je durch Automaten abschaltbar, werden mit folgenden Aggregatgruppen erzeugt:

<table>
<thead>
<tr>
<th>Spannung</th>
<th>24 V</th>
<th>100 V</th>
<th>400 V</th>
<th>1000 V</th>
<th>2000 V</th>
</tr>
</thead>
<tbody>
<tr>
<td>Automat</td>
<td>(6)</td>
<td>(12)</td>
<td>(21)</td>
<td>(40)</td>
<td>(46)</td>
</tr>
<tr>
<td>Transformer</td>
<td>(7)</td>
<td>(13)</td>
<td>(22)</td>
<td>(41)</td>
<td>(47)</td>
</tr>
<tr>
<td>Gleichrichter</td>
<td>(8)</td>
<td>(14)</td>
<td>(23)</td>
<td>(42)</td>
<td>(48)</td>
</tr>
<tr>
<td>(9)</td>
<td>(15)</td>
<td>(24)</td>
<td>(43)</td>
<td>(49)</td>
<td></td>
</tr>
<tr>
<td>Siebmittel</td>
<td>(10)</td>
<td>(16)</td>
<td>(25)</td>
<td>(44)</td>
<td>(50)</td>
</tr>
<tr>
<td>(17)</td>
<td>(26)</td>
<td>(45)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Die Verzögerungseinrichtung besteht aus der Schaltrohre (19) mit den Widerständen (38) und (81), dem Relais (18), (20), (36), (37) und damit verbunden die Sicherungseinrichtung mit der Relaisanordnung (31), (32).
2. Antennen-Anlage

Aus drei Halbwellen-Vertikaldiapolnen bestehende Richtantennenanlage, deren Erregerdipol über ein Energiekabel aus dem Anflugführungssender gespeist wird, und deren Reflektordipole (Reflektoren) über das Energiekabel wechselgetastet werden. Der Tastbetrieb wird am Sender durch Signallampe überwacht.

Einzelheiten sind aus der „D. (Luft) T. 4454 „Antenne“ AFFA 2, Geräte-Handbuch, September 1941“, zu ersehen!

B. Wirkungsweise

1. Der Hochfrequenzgenerator

(Vgl. Stromlaufplan St 514134 — Anlage 1)

stellt einen Fünfstufenaufbau dar, der gekennzeichnet ist durch die Quarzstabilisierung (Einsröhrig-) Steuerstufe (erste Senderstufe), zwei (Zweiröhren-) Verdopplungstufen (zweite und dritte Senderstufe), einen Spannungsverstärker in Gegenaktsschaltung (vierte Senderstufe) und die ebenfalls symmetrische Leistungs-Endstufe (fünfte Senderstufe) mit Tormodulator.

Zur Stabilisierung der in der Senderstufe 1 erzeugten Grundfrequenz (f₀) gegen thermische Einflüsse ist der Steuerquarz zusammen mit einem automatischem Temperatur-Relais, der bei der Überschreitung des Wärmegrades 55° ± 5° Celsius einen Heizkörper abschaltet, im Wärmehalter (4) angeordnet; dieser befindet sich in einem zylindrischen Metallgehäuse, dessen Grundplatte mit acht Steckerstiften versehen ist. Fünf von diesen Steckerstiften haben die Potentialzahlen 8/2/6 und 1/3. Das Arbeiten des Wärmehalters wird am Schauzeichen (64) angezeigt, das schaltungsmäßig parallel mit der Heizung liegt und für die Dauer der Heizung den weißen Stern zeigt. Die in den Senderstufen 2 und 3 bewirkte zweimalige Frequenzverdopplung wird durch gleichartige Schaltmaßnahmen erzielt, indem die Gitterkreise dieser mit je zwei Fünfpolröhren bestückten Stufen jeweils im Gegenakt gesteuert werden und die zugehörigen Anodenkreise im Gleichakt schwingen.

Die Röhrenbestückung der Stufen 1 bis 3 erfolgt mit der indirekt geheizten Fünfpolröhre „Telefunken“ RS 289/IV. Die Senderstufe 4 ist mit zwei indirekt geheizten Dreipolröhren der Type „Telefunken“ RS 282/VIII—X ausgerüstet, und in der Senderendstufe (Stufe 5) werden zwei direkt geheizte Dreipolröhren „Telefunken“ RS 329/III-g und IV benutzt, deren Heizfadennetze kapazitiv (91) an das Gehäuse („Masse“) ange- schlossen ist, das den Nullpunkt für alle Hochfrequenzspannungen darstellt.

Die Energieversorgung des Hochfrequenzgenerators erstreckt sich auf die Heizung der Sende- und Hilfsröhren und die Quarzheizung sowie auf die Speisung der Gitter und Anodenkreise.

Die Heizspannungen werden den Transformatoren (34) bzw. (35) im „Netzteil“ entnommen, die über den dortigen Automaten (36), den Zwischentransformer (3) im Netzan schlußgerät, Hauptschutz (1 und 2) am Netz liegen.

Die Anodenspannungen liefern die im Netzanschlußgerät eingebauten Trocken-Gleichrichter für 400, 1000 und 2000 V, die mittels der Schaltrohre (19), Relais (20) und Schütz (18) verzögert eingeschaltet werden.

Die Schaltröhre (19) ist eine Fünfpolröhre (Pentode), die als Verzögerungsschalter verwendet wird. Die Schaltzeit ist durch Regelung der Heizspannung an der Abgreiffscheibe des Widerstandes (38) auf etwa 70 Sek. eingestellt.

Am Verteilerpotential 28 (+ 400 Volt) werden die Betriebsspannungen für die Anodenkreise der Senderstufen 1 bis 3 abgezweigt, wobei die Schirmgitterspannung über Vorwiderstände gewonnen werden. Die Anodenspannung der Stufe 4 beträgt 1000 Volt und wird am Pot. 29 zugeführt.

Im elektrischen Mittelpunkt des Anodenkreises der Senderendstufe wird, vom Pot. 30 ausgehend, die Hochspannung + 2000 V über die HF-Drossel (80/81) am Pot. 55 zugeführt, indem gleichzeitig die Parallelspeisung der Modulatorröhre (90) über die Induktivität (92) seines Anoden-Abstimmkreises erfolgt.

Die Stromüberwachung der Stufen 1 bis 4 erfolgt grundsätzlich durch Messung der Emissionsströme. Hierzu wird der Stufenschalter (60) des Strommessers (61) in der linken Kammer des Senderoberteiles bedient. Die für den jeweiligen Baßbereich dieses Instrumentes erforderlichen Nebenwiderstände entsprechen den Pos. (3), (20), (34) und (52) und sind durch die Festkapazitäten (2), (17), (28) und (49) hochfrequenzmäßig kurzgeschlossen; die Strommesser liegen einpolig an Masse.

Die Betriebsskontrolle der Leistungsröhren in der Senderendstufe geschieht durch Beobachtung des Gittergleichstromes und des Anoden gleichstromes an den Instrumenten (70) bzw. (89).

2. Die Modulationsanordnung

besteht aus der im linken Senderunteerteil „Tast-Teil“ angeordneten Tonfrequenzmaschine, deren Tonspannung transformatorisch (9) auf das Gitter der Modulatorröhre (90) in der Senderendstufe übertragen wird. Der aus den Serien-Kapazitäten und der mit fest eingestelltem Eisenkern versehenen Induktivität (92) bestehende Anodenkreis dieser Dreipolröhre (RS 329 III g) ist auf die Tonfrequenz $f_M = 1150$ Hz abgestimmt. Da nun die Anodenkreise des Modulators und der Senderendstufe bezüglich der Anodengleichspannung eine Parallelverzweigung darstellen, rufen die durch die Tonfrequenzsteuerung des Modulators entstehenden Anodenstromschwankungen in dieser Parallelröhre entsprechende Schwankungen der an den Röhren der Endstufe herrschenden Anodenspannung hervor.

Der Weichseilen-Spannungsmesser (68) zeigt den Modulationsgrad in Hundertteilen an; er ist durch Bedienung des Feldreglers (10) der Tonfrequenzmaschine einstellbar. Aus Sicherheitsgründen wird die tonfrequente Gitterwechselspannung (1150 Hz) des Modulators über Relais (11) im Tast-Teil geschaltet, nachdem zuvor die Erschaltung der gemeinsamen Anodenspannung der Senderendstufe und des Modulators erfolgt ist.
3. Die Tasteinrichtung

Das wechselweise Schließen und Öffnen der Reflektorrelais wird durch das Tastrad und den zuständigen Kontaktsatz (bzw. den Reservezaltsatz) an der Tastmaschine gesteuert. Das Hilfsrelais (H) in der Anordnung (22) des Tastteils schaltet über einen Zwilingskontakt nacheinander die im Nebenschluß aus dem 24 V-Gleichrichter betriebenen Reflektorrelais, wodurch die Reflektoren geöffnet bzw. geschlossen werden. Gleichzeitig sprechen die Kontrollrelais (K₁ und K₂) im Tastteil an.

Kurzzeitig, etwa für die Dauer von fünf Millisekunden, wird hierbei das Arbeitsrelais offen gehalten, während gleichzeitig noch das Ruhe-relais geöffnet ist. Für diese sehr kurze Zeit sind daher beide Reflektoren unterbrochen, also unwirksam, und der Erregerdipol strahlt allein. Durch diese „Unterlappung“ ist der für die Entstehung des Dauertonbereiches (Leitstrahl) wichtige saubere, d. h. knackfreie, Zeichenübergang gewährleistet.

Durch Umlegen des Kippschalters (15) im Tastteil von „Automat“ auf „Hand“ wird der Kontaktmechanismus der Tastmaschine abgeschaltet, und die Reflektorrelais werden durch eine aus für vorgesehene Buchsenleiste (16) anzuschließende Handtaste betätigt.

Schaltfolge d. Reflektorschalters Pos. 20

<table>
<thead>
<tr>
<th>Stellung</th>
<th>Arbeits-Reflektor-Rel.</th>
<th>Ruhe-Reflektor-Rel.</th>
<th>Bemerkung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Betriebs</td>
<td>tastet</td>
<td>tastet</td>
<td>Kontakte beider Relais offen</td>
</tr>
<tr>
<td>Rund (Punkt)</td>
<td>■</td>
<td>■</td>
<td>kein Relais angezogen, d. h. Kontakt des RR geschlossen</td>
</tr>
<tr>
<td>Striche</td>
<td>■</td>
<td>■</td>
<td>Kontakt des AR geschlossen, Kontakt des RR offen</td>
</tr>
</tbody>
</table>

4. Die Energieversorgung und Schutzvorrichtungen

(Vgl. Stromlaufplan St 753982 — Anlage 2)

Der gesamte Energiebedarf des Senders gliedert sich in den für den Hochfrequenzgenerator und den Tastmechanismus erforderlichen Leistungsaufwand, zu dem die Ver-
braucherleistung in den Hilfskreisen zur Spannungsregelung, Frequenzhaltung, Betriebsüberwachung und Ventilation des Senders hinzukommt.

Das Netz wird an der Steckerplatte (38) im Netzteil eingeführt. Über dem Netzautomaten (28) „Ein“- und „Aus“-Schalter (30) und Spannungswählschalter (27) gelangt die Spannung zum Netzan schlüsgerät, wo sie über den Automat (1) oder (2) (je nach Höhe der Spannung) an den Vorschal ttransformator (3) gelegt wird. Am Vorschal ttransformator wird die Spannung von 380 V auf 220 V herabtransformiert; außerdem sind Anschlüsse für dauernde Über- oder Unterspannung vorgesehen.

Eine Phase des Vorschal ttransformators ist über den Pintsch-Regler (5) geführt. Die Spannungsregelung kann wahlweise am Schalter (57) eingeschaltet werden.

Hinter dem Vorschal ttransformator liegen:

1. 24 Volt-Gleichrichter (8) zur Erzeugung der Schaltspannungen mit dem dazugehö rigen Transformatore (7) und Automaten (6).

2. 100 Volt-Gleichrichter (14) zur Erzeugung der Gittervorspannung in den Stufen 1—4, der Modulationsröhre und der Anodenspannung für die Schaltröhre mit dem dazu gehörigen Transformatore (13) und Automaten (12).

Um eine Beschädigung der kalten Senderöhre zu vermeiden, werden die Anodenspan nungen für die Röhre erst eingehalten, wenn die Kathoden emittieren. Für diesen Zweck ist die Schaltröhre (19) vorgesehen, die die Anodenspannungen verzögert einschaltet. Die Anheizzeit ist am Widerstand (38) eingestellt. Sie beträgt etwa 70 Sekunden. Nachdem die Röhre emittiert, schaltet der Anodenstrom über Relais (20), Schütz (18) und legt somit die drei Anodenspannungsgleichrichter an Spannung. Nach beendetem Schaltvorgang hält sich das Relais (20) über den Widerstand (39) und die Schaltröhre wird vom Schütz (18) abgeschaltet.

Die drei Anodenspannungsgleichrichter mit ihren Transformatoren und Automaten sind:

3. 400 Volt-Gleichrichter (23) für die Stufen 1—3 mit Transformatore (22) und Automat (21)

4. 1000 Volt-Gleichrichter (42) für die Stufe 4 mit Transformatore (41) und Automat (40)

Über das Verbindungskabel werden die Spannungen zum Netzteil geführt und entsprechend ihrer Verwendung an die einzelnen Verbraucher verteilt.

6. Schutzvorrichtungen

Nach Einlegen der Automaten (1) bzw. (2), (6), (12), (21), (40) und (46) im Netzan schlüsgerät, der Automaten (36) im Netzteil, (13) im Tastteil ist der Sender bedienungs klar für Einschaltung mittels Steckschlüssels am Hauptschalter (3), der im Netzteil des Senders angeordnet ist. Zugleich läuft der 24 Volt-Gleichrichter sowie der 100 Volt Gleichrichter an, der die Anodenspannung für die Schaltröhre (19) über die Erregewicklung und den Ruhekontakt Pot. (15/36) des Relais (20) liefert. Nach der bis zur vollen Emission der indirekt geheizten Kathode erforderlichen Zeit (rd. 70 Sek.) schaltet Relais (20); hierbei wird seine Feldwicklung über den Vorwiderstand (39) unmittelbar
an den 100 Volt-Gleichrichter gelegt, so daß es für die Dauer der Sender-Einschaltung in dieser Schaltstellung verbleibt, obwohl gleichzeitig die Heizung der Schaltröhre (19) durch Öffnung des Kontakttes Pot. 16/45 des Schaltschützes (18) abgeschaltet wird. Ferner wird über den ebenfalls geschlossenen Kontakt 44/47 die Erregерwicklung des Schaltschützes (18) an die 220 Volt-Spannung der Phase ST angeschlossen, wodurch der 400 Volt-, 1000 Volt- und 2000 Volt-Gleichrichter verzögert eingeschaltet werden. Da nun die Schaltröhre (19) mit der gleichen Röhrentype (RS 289) bestückt ist wie die Senderstufen 1 bis 3, wird die Anodenspannung für diese erst geliefert, wenn die zugehörigen Senderröhren emissionsfähig sind, und nachdem zuvor die Gittervorspannungen durch den Betriebssstrom des 100 Volt-Gleichrichters als Spannungsabfall am Widerstand (62) vorhanden sind; dsgl. werden auch die Anodenspannungen für die Stufe 4 und für die Sender-Endstufe erst angeschaltet, wenn die Gittervorspannung in der Stufe 4 vorhanden ist.

Zusammenfassung: Selbsttätige Ausschaltung des Anflugführungssenders erfolgt bei folgenden Störmöglichkeiten:

a) Störungen in der Heizung der Röhren:
 Bei Störungen in der Stromversorgung des Netzteils oder bei Auslösung des Automaten (36) im Netzteil fällt Relais (37) ab; über Relais (36) wird dann der Sender
 durch Abschalten der drei Anodenspannungen außer Betrieb gesetzt.

b) Störungen am 24 Volt-Gleichrichter:
 Bei Defekten am 24 Volt-Gleichrichter (Tastspannung) fällt Relais (36) ab, wodurch Relais (20) abfällt und die drei Anodenspannungen abschal
tet.

c) Störungen am Spannungsregler:
 Bei übernormalen Spannungsstößen, wo die Regler-Endstellung für die Dauer von 8 bis 12 Sek. erreicht wird, schließen die Reglerkontakte Pot. 11/49 das thermisch verzögerte Relais (31); dieses öffnet Kontakt Pot. 47/48 und schaltet die drei Anodenspannungen aus, außerdem erhält die Spule des Hauptschalters (28) über Pot. 11/49 und Widerstand (58) Spannung und schaltet das gesamte Netz ab.

7. Der Spannungsregler

8. Die Heiztransformatoren

III. Betriebsvorschrift

A. Inbetriebnahme

Achtung! Lüftungsklappen für Sender und Netzanschlußgerät öffnen! Hauptschalter im Netzteil „Ein“-schalten!

B. Außerbetriebsetzung

Hauptschalter im Netzteil „Aus“-schalten!

C. Erstabstimmung

Achtung!

Bei einem Wechsel der Netzspannung ist zu prüfen, ob der richtige Automat (1) oder (2) im Netzanschlußgerät eingeschaltet ist.

Nachdem man sich davon überzeugt hat, daß die Drei-Phasennetzspannung vorhanden ist, werden sämtliche Automaten eingeschaltet. Mit dem Hauptschalter (30) im Netzteil wird der Sender eingeschaltet, die weiße Lampe leuchtet auf.

Mit dem Voltmeter-Umschalter können die verkeilten Netzspannungen gemessen werden. Das Netzamperemeter zeigt etwa 3—4 Amp. an. Nach ungefähr 70 Sek. schaltet das Schütz (18) die Anodenspannungen ein.

Abb. 8: Sender Vorderansicht ohne Deckplatten
Der Sender ist abstimmbereit

Nach Abnahme der Deckplatten (siehe Abb.7) im Senderoberteil und nach Lösen der Feststellvorrichtung mittels Schraubenziehers (die Durchführung hierzu ist grün umrandet) wird die Abstimmung stufenweise vorgenommen, wobei der Emissionsstrommesser nach entsprechender Einstellung des farbig markierten Umschalters beobachtet wird (siehe Abstimmtablelle am Sender).

Abstimmung der Senderstufen 1 bis 3

Achtung!
Lüftungsklappen auf!

2. Umschalter auf „grün“, Abstimmgriff „2“ bis zum Kleinstwert am Strommesser einstellen.

3. Umschalter auf „blau“, Abstimmgriff „3“ bis zum Kleinstwert am Strommesser einstellen.

5. Endstufe

Der Gitterstrom „5“ beträgt nun 100 . . . 140 mA.

6. Die Einstellung der Sendermodulation erfolgt am Feldregler „Tonspannung“ im Tastteil, bis am Modulationsgrad-Instrument 90 % angezeigt wird.

Nun ist der gesamte Sender (ohne Veränderung der Kopplungen) nachzustimmen und Feststellung der Skalen vorzunehmen.

7. „Klickfrei-machen“ des Leitstrahles

ist bei dem Sender AS 4 abweichend von der in D. (Luft) T. 4454, Antenne AFFA 2, Gerätehandbuch, September 1941, Seite 19 gegebenen Anweisung nach Abstimmung des Senders AS 4 folgendermaßen vorzunehmen:

a) Meß-Empfänger (Meßdipol mit Monavi) am Meßpunkt auf Stativ aufstellen, Meßleitung auslegen.

b) Sender einschalten, Meß-Empfänger so abstimmen, daß am Monavi etwa 30 Skalenteile erreicht werden (Antenne am Meß-Empfänger verkürzen oder verlängern).

c) Monavi am Meß-Empfänger abnehmen und Meßleitung anschließen. Leitung hinten am Stativ vom Dipol entfernt befestigen. Monavi im Wagen anstecken; wenn nötig, Leitungsstecker umpoilen.

d) Einrichten des Leitstrahles durch Drehen der Antenne, bis Monavi keine Kennung zeigt.
e) „Klickfrei-machen“ des Leitstrahles:
 aa) Reflektorschalter im Sender auf (+) schalten und Monavi ablesen.
 bb) Reflektorschalter auf (O) schalten, durch Drehen der Antennenabstimmung vor-
er abgelesenen Monaviwert einstellen.
 Der Vorgang a) und b) ist so lange zu wiederholen, bis in den Stellungen (O),
 (+), (—) keine Änderung des Monavi-Ausschlages festzustellen ist.
 f) Reflektorschalter auf (B) zurückschalten und Klappe schließen.

 Achtung! Beim Einrichten und „Klickfrei-machen“ des Leitstrahles dürfen sich
 in der Nähe der Antenne oder des Meß-Empfängers keine Personen,
 Fahrzeuge usw. befinden.

8. Messung der Leitstrahlbreite
 Meßschaltung verbleibt wie unter III C 7 c.
 a) Die Antenne wird um + 10° verdreht.
 b) Reflektorschalter am Sender auf (+) schalten und Stromwert auf Monavi ablesen.
 c) Reflektorschalter auf (—) schalten und Stromwert auf Monavi ablesen.
 d) Antenne wird um — 10° verdreht.
 e) Reflektorschalter auf (+) schalten und Stromwert auf Monavi ablesen.
 f) Reflektorschalter auf (—) schalten und Stromwert auf Monavi ablesen.
 Die vier erhaltenen Werte sind wie folgt rechnerisch zu verwerden:
 Die Summe der beiden großen Stromwerte ist E_1; die der kleinen ist E_2.
 Die Leitstrahlbreite b errechnet sich dann nach der Formel:
 $$ b = \frac{E_2}{E_1 - E_2} \text{ (Grad)} $$

9. Es ist nochmals zu prüfen, ob der Reflektorschalter wieder auf „B“ (Betrieb) ge-
 schaltet, die Klappe geschlossen und die Deckplatten im Senderoberteil wieder an-
 geschraubt sind.

D. Betriebsüberwachung

1. Zur Überwachung dienen außer den Meßgeräten zur strom- und spannungsmäßigen
 Überwachung der Arbeits- und Hilfskreise des Senders das Schauzeichen im Hoch-
 frequenztel und die im Tastteil angeordneten Geräte zur Anzeige des Tastbetriebes.
 Das Schauzeichen (64) in der Senderstufe 1 zeigt für die Dauer der Heizung des
 Wärmehalters einen weißen Stern. Das Schauzeichen muß fortgesetzt schalten und
 zwar etwa 8 Sek. weißes Feld und 20 Sek. schwarzes Feld zeigen. Bei herausge-
 nommenem Quarz- oder defekten Heizkreis im Quarzhalter zeigt das Schauzeichen
 dauernd ein weißes Feld.
 Die Betriebsbereitschaft des Senders und seine vollkommene Energieversorgung ist
 an den Instrumenten zu kontrollieren. Weiße Lampe ist nur Kontrolle für Heizung
 23 V.
 Die Überwachung des Tastbetriebes der Reflektordipole erfolgt mittels der farbigen
 Signallampe (18) (Grün), die im entsprechenden Tastrythmus aufleuchtet.

2. Quarzwechsel
 Bei Quarzwechsel ist darauf zu achten, daß beim Herausziehen des Quarzes die
 Fassung leicht hin- und hergekippt wird, um ein Abreißen der Kappe zu vermeiden.
3. Messung der Betriebsspannungen und -ströme

<table>
<thead>
<tr>
<th>Hochfrequenz-Teil</th>
<th>Im Senderabschnitt:</th>
<th>wird gemessen:</th>
<th>am Spannungsmesser</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1)</td>
<td>(2)</td>
<td>(3)</td>
<td></td>
</tr>
<tr>
<td>(61) je nach Stellung des Schalters</td>
<td>(60) die Emission der Senderröhren in den Stufen 1 bis 4</td>
<td>(68) der Modulationsgrad</td>
<td></td>
</tr>
<tr>
<td>(70) der Gittergleichstrom der Endstufe</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(89) der Anodengleichstrom der Endstufe</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Netz-Teil</th>
<th>Im Senderabschnitt:</th>
<th>wird gemessen:</th>
<th>am Spannungsmesser</th>
</tr>
</thead>
<tbody>
<tr>
<td>(24) die Stromaufnahme zwecks Energieversorgung</td>
<td>(25) die verketteten Spannungen des Dreiphasen-Netzes mittels Umschalters</td>
<td>(23) die Heizspannungen mittels Umschalters</td>
<td></td>
</tr>
<tr>
<td>(1) die Spannung des 24 V- bezw. 100 V-Gleichrichters je nach Stellung des Umschalters</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Test-Teil</th>
<th>Im Senderabschnitt:</th>
<th>wird gemessen:</th>
<th>am Spannungsmesser</th>
</tr>
</thead>
<tbody>
<tr>
<td>(2) die Spannung des 400 V-Gleichrichters</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(3) die Spannung des 1000 V-bzw. 2000 V-Gleichrichters je nach Stellung des Umschalters</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

4. Röhrenwechsel

Beim Wechsel der Schaltröhre (19) im Netzanschlußgerät ist darauf zu achten, daß sie die Anheizzeit von etwa 70 Sek. einhält. Es ist aus den Reserveröhrten ein entsprechendes Stück auszusuchen.

Nach Wechsel der Röhren in den Stufen 4 und 5 ist die Neutralisation zu überprüfen (siehe Abschnitt III, E).

5. Behandlungsvorschrift für den Pintsch-Regler

a) **Allgemeine Reinigung**

Staub ist mit einem Blasebalg und nicht mit einem Pinsei zu entfernen. Dabei soll die Kohlesäule nicht berührt werden. Die Ankerlager bedürfen keiner Reinigung oder Schmierung.

b) **Reinigung des Dämpfers**

Bei Verdacht auf eingedrungenen Staub sind sowohl der Zylinder als auch der Kolben des Dämpfers mit einem sauberen, fettfreien, trockenen, weichen Lappen oder mit entspr. dünnem Papier sorgfältig aus- bzw. abzuwischen. Das Ausreiben der Zylinder-Innenfläche geschieht am einfachsten von unten her mit Hilfe eines mit Stoff umwickelten Holzstabes. Der Dämpfer läßt sich durch Lösen der Splinte leicht abnehmen.
c) Veränderung der geregelten Spannung

Die Höhe der geregelten Spannung ist von der Lieferfirma richtig eingestellt. Sollte eine Veränderung der geregelten Spannung erforderlich sein, so kann dies durch Verstellen des Abgriffes am Widerstand (5a) im Netzanschlußgerät geschehen.

Wenn sich nach längerer Betriebszeit die Höhe der geregelten Spannung verändert hat, so ist der Säulenrückdruck zu prüfen nach der Weisung der Bedienungsvorschrift Nr. 936, die bei Bedarf von der Firma Julius Pintsch Kommanditgesellschaft, Berlin O 17, angeliefert werden kann.

E) Die Neutralisation des Senders

1. Abgleich der Stufe 4

Der Hochspannungsgleichrichter wird mittels Automaten (40) abgeschaltet. Nach Entfernung der Frontplatten und vollständiger Abstimmung der Senderstufen 1 bis 3 wird der Schalter (60) des Emissionsstromanzeigers (61) auf „4“ (rot) gestellt. Nun wird bei eingestellter Resonanzlage der Abstimmung durch Verdrehen des Gleichlaufkondensators (54) der am Strommesser (61) abzulesende Gitterstrom auf Maximum eingestellt. Hierauf wird die Frontplatte wieder aufgesetzt.

2. Abgleich der Stufe 5

3. Abgleich-Kontrolle

Die dem Abgleich der Stufen 4 und 5 entsprechende Einstellung der Neutrokondensatoren wird in der Nähe der für den mitgelieferten Röhrensatz gekennzeichneten Stelle liegen; daher benutze man diese auch zweckmäßig als Ausgangspunkt für nachträgliche Abgleichmaßnahmen!
Eine einfache Überprüfung des Abgleiches kann wie folgt stattfinden:

Zu 1.:

Der Steuerquarz wird entfernt und bei angeschalteter Anodenspannung die „Abstimmung Stufe 4“ verstellt; nach guter Neutralisation darf sich hierbei der Zeiger des Strommessers (61) nicht bewegen! Hierauf wird der Quarz wieder eingesetzt und Stufe 4 wieder genau abgestimmt.

Zu 2.:

Man schaltet die Automaten (21) und (40) aus und (46) ein und verstimmt das Anodenvariometer der Stufe 5 durch Drehbewegungen; bei einwandfreiem Abgleich verbleibt der Zeigerausschlag des Strommessers (89) ruhig.
IV. Stücklisten

500 Watt Anflugführungssender AS 4, mot.

A. Senderstufe 1—4 Sk 512135

<table>
<thead>
<tr>
<th>Pos.</th>
<th>Benennung</th>
<th>Zeichnungs-Nr. a</th>
<th>Elektrische Werte</th>
<th>Stück</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Senderöhre</td>
<td>Telefunken</td>
<td>Rs 289/IV</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>Kondensator</td>
<td>KGR 22, ZO 501 861</td>
<td>2000 cm, 1500 V Prüfspannung</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>Nebenwiderstand, gewickelt auf Körper O 3241/1</td>
<td>Gossen</td>
<td>für 150/1 mA bei 100 Ω</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>1 Satz Wärmehalter, kompl. m. Quarz</td>
<td>EO 103 453</td>
<td>15 Ω</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>Widerstand</td>
<td>Rosenthal HLW 20</td>
<td>S. & H. Karbowid 4a KW</td>
<td>1</td>
</tr>
<tr>
<td>6</td>
<td>Widerstand</td>
<td>S. & H. Karbowid 4a</td>
<td>20 kΩ ± 5 %</td>
<td>1</td>
</tr>
<tr>
<td>7</td>
<td>frei</td>
<td>Type KSTh 391</td>
<td>100 kΩ ± 5 %</td>
<td>1</td>
</tr>
<tr>
<td>8</td>
<td>Widerstand</td>
<td>Hescho Tempa S</td>
<td>20 pF ± 0,3 pF</td>
<td>1</td>
</tr>
<tr>
<td>9</td>
<td>wie Teil 2</td>
<td>Type KSThū</td>
<td>8 pF ± 10 %</td>
<td>1</td>
</tr>
<tr>
<td>10</td>
<td>Kondensator</td>
<td>Sk 627 071/I</td>
<td>Hescho Hüchten-kondensator Tempa Š</td>
<td>1</td>
</tr>
<tr>
<td>11</td>
<td>wie Teil 2</td>
<td>Sk 1 543 211</td>
<td>Hescho Hüchten-kondensator Tempa Š</td>
<td>1</td>
</tr>
<tr>
<td>12</td>
<td>Drehkondensator</td>
<td>Sk 627 071/I</td>
<td>Hescho Hüchten-kondensator Tempa Š</td>
<td>1</td>
</tr>
<tr>
<td>13</td>
<td>Schwingkreisspule und Kopplungsspule Stufe 1—2</td>
<td>Rosenthal HLW 15</td>
<td>3 kΩ, 15 Watt</td>
<td>1</td>
</tr>
<tr>
<td>14</td>
<td>Widerstand</td>
<td>Telefunken</td>
<td>Rs 289 IV</td>
<td>1</td>
</tr>
<tr>
<td>15</td>
<td>Senderöhre</td>
<td>KGR 22, ZO 501 861</td>
<td>1000 cm, 1500 V Prüfspannung</td>
<td>1</td>
</tr>
<tr>
<td>16</td>
<td>wie Teil 15</td>
<td>KGR 22, ZO 501 861</td>
<td>200 cm, 1500 V Prüfspannung</td>
<td>1</td>
</tr>
<tr>
<td>17</td>
<td>Kondensator</td>
<td>KGR 22, ZO 501 861</td>
<td>für 150/1 mA bei 100 Ω</td>
<td>1</td>
</tr>
<tr>
<td>18</td>
<td>Kondensator</td>
<td>KGR 22, ZO 501 861</td>
<td>S. & H. Karbowid 2b KW</td>
<td>1</td>
</tr>
<tr>
<td>19</td>
<td>wie Teil 18</td>
<td>KGR 22, ZO 501 861</td>
<td>100 kΩ ± 5 %</td>
<td>1</td>
</tr>
<tr>
<td>20</td>
<td>Nebenwiderstand, gewickelt auf Körper O 3241/1</td>
<td>KGR 22, ZO 501 861</td>
<td>2000 cm, 1500 V Prüfspannung</td>
<td>1</td>
</tr>
<tr>
<td>21</td>
<td>Widerstand</td>
<td>S. & H. Karbowid 2b KW</td>
<td>3 kΩ, 15 Watt</td>
<td>1</td>
</tr>
<tr>
<td>22</td>
<td>Kondensator</td>
<td>KGR 22, ZO 501 861</td>
<td>30 kΩ ± 5 %</td>
<td>1</td>
</tr>
<tr>
<td>23</td>
<td>wie Teil 22</td>
<td>KGR 22, ZO 501 861</td>
<td>2000 cm, 1500 V Prüfspannung</td>
<td>1</td>
</tr>
<tr>
<td>24</td>
<td>Widerstand</td>
<td>Rosenthal HLW 15</td>
<td>Sk 555 292</td>
<td>1</td>
</tr>
<tr>
<td>25</td>
<td>Kondensator</td>
<td>KGR 22, ZO 501 861</td>
<td>Sk 1 543 181</td>
<td>1</td>
</tr>
<tr>
<td>26</td>
<td>Drehkondensator</td>
<td>KGR 22, ZO 501 861</td>
<td>5000 cm, 1500 V Prüfspannung</td>
<td>1</td>
</tr>
<tr>
<td>27</td>
<td>Schwingkreisspule und Kopplungsspule Stufe 2—3</td>
<td>KGR 22, ZO 501 861</td>
<td>5000 cm, 1500 V Prüfspannung</td>
<td>1</td>
</tr>
<tr>
<td>28</td>
<td>Kondensator</td>
<td>KGR 22, ZO 501 861</td>
<td>5000 cm, 1500 V Prüfspannung</td>
<td>1</td>
</tr>
<tr>
<td>29</td>
<td>wie Teil 21</td>
<td>Telefunken</td>
<td>35 pF ± 5 %, 600 VA, 1500 V Prüfspannung</td>
<td>1</td>
</tr>
<tr>
<td>30</td>
<td>Senderöhre</td>
<td>KGR 22, ZO 501 861</td>
<td>200 cm, 1500 V Prüfspannung</td>
<td>1</td>
</tr>
<tr>
<td>31</td>
<td>wie Teil 30</td>
<td>Gossen</td>
<td>für 300/1 mA bei 100 Ω</td>
<td>1</td>
</tr>
<tr>
<td>32</td>
<td>Kondensator</td>
<td>Gossen</td>
<td>35 pF ± 5 %, 600 VA, 1500 V Prüfspannung</td>
<td>1</td>
</tr>
<tr>
<td>33</td>
<td>wie Teil 32</td>
<td>Gossen</td>
<td>750 V HF-Spannung</td>
<td>1</td>
</tr>
<tr>
<td>34</td>
<td>Nebenwiderstand, gewickelt auf Körper O 3241/1</td>
<td>Hescho RKO 511</td>
<td>35 pF ± 5 %, 600 VA, 1500 V Prüfspannung</td>
<td>1</td>
</tr>
<tr>
<td>35</td>
<td>Kondensator</td>
<td>Tempa Š 8×20 mm</td>
<td>750 V HF-Spannung</td>
<td>1</td>
</tr>
</tbody>
</table>
500 Watt Anflugführungssender AS 4, mot.
A. Senderstufe 1—4 Sk 512 135

<table>
<thead>
<tr>
<th>Pos.</th>
<th>Benennung</th>
<th>Zeichnungs-Nr. a Stückliste b</th>
<th>Elektrische Werte</th>
<th>Stück</th>
</tr>
</thead>
<tbody>
<tr>
<td>36</td>
<td>Kondensator</td>
<td>KGR 22, ZO 501 861</td>
<td>1000 cm, 1500 V Prüfspannung</td>
<td>1</td>
</tr>
<tr>
<td>37</td>
<td>wie Teil 36</td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>38</td>
<td>Widerstand</td>
<td>Rosenthal HW 15</td>
<td>15 kΩ, 15 W</td>
<td>1</td>
</tr>
<tr>
<td>39</td>
<td>Kondensator</td>
<td>KGR 22, ZO 501 861</td>
<td>2000 cm, 1500 V Prüfspannung</td>
<td>1</td>
</tr>
<tr>
<td>40</td>
<td>Drehkondensator</td>
<td>Sk. 555 302/1</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>41</td>
<td>Schwingkreisspule</td>
<td>Sk. 1 510 941</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>42</td>
<td>Ankoplungsspule</td>
<td>Sk. 674 911/1</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>43</td>
<td>Kondensator</td>
<td>KGR 22, ZO 501 861</td>
<td>500 cm, 1500 V Prüfspannung</td>
<td>1</td>
</tr>
<tr>
<td>43 a</td>
<td>Kondensator</td>
<td>KGR 22, ZO 501 861</td>
<td>500 cm, 1500 V Prüfspannung</td>
<td>1</td>
</tr>
<tr>
<td>44</td>
<td>Kondensator</td>
<td>Sk. 605 121/1</td>
<td>5000 cm, 3000 V Prüfspannung</td>
<td>1</td>
</tr>
<tr>
<td>45</td>
<td>Widerstand</td>
<td>Karbowid 13b</td>
<td>50 Ω ± 5 %</td>
<td>1</td>
</tr>
<tr>
<td>46</td>
<td>frei</td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>47</td>
<td>Widerstand</td>
<td>S. & H. Karbowid 3b KW</td>
<td>100 kΩ ± 5 %</td>
<td>1</td>
</tr>
<tr>
<td>48</td>
<td>wie Teil 47</td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>49</td>
<td>Kondensator</td>
<td>KGR 22, ZO 501 861</td>
<td>1000 cm ± 10 %, 1500 V Prüfspannung</td>
<td>1</td>
</tr>
<tr>
<td>50</td>
<td>Senderöhre</td>
<td>RS 282 VII</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>51</td>
<td>wie Teil 50</td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>52</td>
<td>Nebenwiderstand,</td>
<td>Gossen.</td>
<td>für 300/1 mA bei 100 Ω</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>gewickelt auf Körper</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>O 3241/1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>53</td>
<td>Kondensator</td>
<td>Hescho RKO 511</td>
<td>35 pF ± 5 %, 600 VA, 1500 V Prüfspannung, 750 HF-Spannung</td>
<td>1</td>
</tr>
<tr>
<td>54</td>
<td>Neutrokondensator</td>
<td>Tempo S 8 x 20 mm</td>
<td></td>
<td></td>
</tr>
<tr>
<td>55</td>
<td>frei</td>
<td>Sk. 552 642</td>
<td></td>
<td></td>
</tr>
<tr>
<td>56</td>
<td>Kondensator</td>
<td>Sk. 552 672</td>
<td>1500 cm ± 10 %, 1500 Prüfspannung</td>
<td>1</td>
</tr>
<tr>
<td>57</td>
<td>wie Teil 56</td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>58</td>
<td>Variometer</td>
<td>Sk. 582 332</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>59</td>
<td>Koppelspule</td>
<td>Sk. 1 500 501</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>60</td>
<td>Umschalter</td>
<td>Kabi Pl. Nr. 1825/5</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>61</td>
<td>Strommesser</td>
<td>Gossen Paut 2 mV</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1 mA, 100 mV, Skala für die Be-</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>reiche 0—150/300 mA zur Ver-</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>wendung mit getrennten Neben-</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>widerständen, Aufbau, Metall-</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>gehäuse, abgedeckte Skala,</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Skalenbild S997/B, isolierte</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Null-</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>stellschraube, Abdeckring Nr.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>9200, Gr. 2, mit Glas. Hierzu</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>gehören die Nebenwiderstände</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Pos. 3, 20, 34, 52</td>
<td></td>
</tr>
<tr>
<td>62</td>
<td>Widerstand</td>
<td>Reichardt</td>
<td>800 Ω, 32 W, 120/25 Ω, mit 2 Ab-</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>greifschienen nach DTV 18 und</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>19, mit Befestigungswinkeln</td>
<td></td>
</tr>
<tr>
<td>63</td>
<td>frei</td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>64</td>
<td>Schauzeichen</td>
<td>Sperrsignal A.-G. Type SZ 527 So</td>
<td>200 Ω für 5 V~, Ansprechspan-</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>nung, verstärkte Stern- und ver-</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>stärkte Rückzugfeder</td>
<td></td>
</tr>
<tr>
<td>Pos.</td>
<td>Benennung</td>
<td>Zeichnungs-Nr. a</td>
<td>Elektrische Werte</td>
<td>Stück</td>
</tr>
<tr>
<td>------</td>
<td>---------------------------</td>
<td>------------------</td>
<td>--</td>
<td>-------</td>
</tr>
<tr>
<td>65</td>
<td>Senderöhre</td>
<td>Telefunken</td>
<td>RS 329 III g</td>
<td>1</td>
</tr>
<tr>
<td>66</td>
<td>wie Teil 65</td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>67</td>
<td>trel</td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>68</td>
<td>Spannungsmesser</td>
<td>Gossen Paut 2v</td>
<td>0—10 V für 1150 Hz, Dreheisengerät, Aufbau, Isoliergehäuse, abgedeckte Skala. 599/11, roter Markierungszeiger, isolierte Nullstellschraube. Abdeckring Nr. 9200, Gr. 2, mit Glas, alte Gehäuseform, steckbarer Steckerabstand 30 mm 1000 cm, 3000 V Prüfspannung</td>
<td>1</td>
</tr>
<tr>
<td>69</td>
<td>Kondensator</td>
<td>Sk 605 121/I</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>70</td>
<td>Strommesser</td>
<td>Gossen Paut 2 mA</td>
<td>0—300 mA, Drehsulgerät, Aufbau, Isoliergehäuse, abgedeckte Skala, Skalenbild 599/9, roter Markierungszeiger, isolierte Nullstellschraube, Abdeckring Nr. 9200, Gr. 2, mit Glas</td>
<td>1</td>
</tr>
<tr>
<td>71</td>
<td>Doppeldrossel</td>
<td>Sk 661 721</td>
<td>2x8 1/2 Wdg. 0,6 Nickellindraht auf glasiertem Calitkörper Sk 550 251/I</td>
<td>1</td>
</tr>
<tr>
<td>72/73</td>
<td>Neutrokondensator</td>
<td>Sk 557 053</td>
<td>12 Wdg. 0,35 Ω Cu SS</td>
<td>1</td>
</tr>
<tr>
<td>74</td>
<td>Drossel</td>
<td>Sk 673 121</td>
<td>50 Ω, 2x100 Ω, parallel</td>
<td>1</td>
</tr>
<tr>
<td>75</td>
<td>Widerstand</td>
<td>S.&H. Korbowid 4a KW</td>
<td>200 cm ± 5%, 6000 V Prüfspannung, Kondensatoren paarweise genaugleich</td>
<td>1</td>
</tr>
<tr>
<td>76</td>
<td>Kondensator</td>
<td>Sk 661 541</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>77</td>
<td>wie Teil 76</td>
<td>Sk 608 121/I</td>
<td>900 cm ± 10%, 3000 V Prüfspannung</td>
<td>1</td>
</tr>
<tr>
<td>78</td>
<td>Kondensator</td>
<td>Sk 608 121/II</td>
<td>900 cm ± 10%, 3000 V Prüfspannung</td>
<td>1</td>
</tr>
<tr>
<td>79</td>
<td>Drossel</td>
<td></td>
<td>15 Wdg., 12 mm Ω, Cu 1 Ω, freitragend</td>
<td>1</td>
</tr>
<tr>
<td>80</td>
<td>wie Teil 80</td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>81</td>
<td>Abstimmschienen</td>
<td>Sk 554 484/40/61</td>
<td>4 nF, allseitig verlöset 2x210 Ω, 0,8 A, 200x30 Ω, in Serie mit je einer Abgeklemmschelle nach DTV 18/19</td>
<td>1</td>
</tr>
<tr>
<td>82</td>
<td>mit Kurzschlußsieber</td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>83</td>
<td>Schwungkreisspule</td>
<td>Sk 552 862/V</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>84</td>
<td>Schwungkreisspule</td>
<td>Sk 552 862/VI</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>85</td>
<td>Ankopplungsspule</td>
<td>Sk 618 641</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>86</td>
<td>Doppeldrehkondensator</td>
<td>Sk 557 063</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>87</td>
<td>Kondensator</td>
<td>Bosch RM/MC 4G 11/1</td>
<td>od. RM/HE 5/6</td>
<td>1</td>
</tr>
<tr>
<td>88</td>
<td>Widerstand</td>
<td>Reichardt</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>89</td>
<td>Strommesser</td>
<td>Gossen Paut 2a</td>
<td>0—1 A, Drehsulgerät, Aufbau, Isoliergehäuse, abgedeckte Skala nach Skalenbild 599/10, roter Markierungszeiger, isolierte Nullstellschraube, Abdeckring Nr. 9200, Gr. 2, mit Glas</td>
<td>1</td>
</tr>
<tr>
<td>90</td>
<td>Senderöhre</td>
<td>Telefunken</td>
<td>RS 329 III g</td>
<td>1</td>
</tr>
<tr>
<td>Pos.</td>
<td>Benennung</td>
<td>Zeichnungs-Nr. a/Stückliste b</td>
<td>Elektrische Werte</td>
<td>Stück</td>
</tr>
<tr>
<td>------</td>
<td>------------------------</td>
<td>-------------------------------</td>
<td>---</td>
<td>-------</td>
</tr>
<tr>
<td>91</td>
<td>Kondensator</td>
<td>KGR 22, ZO 501 861</td>
<td>10.000 cm ± 10%, 1500 V Prüfspannung</td>
<td>1</td>
</tr>
<tr>
<td>92</td>
<td>Tankkreis, kompl.</td>
<td>Sk 548 574/II</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>93</td>
<td>frei</td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>94</td>
<td>Drossel</td>
<td>Sk 534 021/IIg</td>
<td>120 Wdg, 0,15 CuTT</td>
<td>1</td>
</tr>
<tr>
<td>95</td>
<td>wie Pos. 94</td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>96</td>
<td>frei</td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>97</td>
<td>Strommesser</td>
<td>Gossen Thr 2a</td>
<td>0—5 A, Einbau, Metallgehäuse Nr. 8181, Skalenbild 599/12, roter Markierungszeiger, isolierte Nullstellenschraube, Abdeckring Nr. 8659, mit Glas, 132 mm Ø, jed. mit 4 mm-Bohrung in 123 mm Abstand</td>
<td>1</td>
</tr>
<tr>
<td>Pos.</td>
<td>Benennung</td>
<td>Zeichnungs-Nr. a Stückliste b</td>
<td>Elektrische Werte</td>
<td>Stück</td>
</tr>
<tr>
<td>------</td>
<td>-----------------------------------</td>
<td>------------------------------</td>
<td>--</td>
<td>-------</td>
</tr>
<tr>
<td>1</td>
<td>Spannungsmesser</td>
<td>Gossen Paut 2 vv</td>
<td>0—60/150 V, Drehspulgerät, mit eingebautem Vorwiderstand und gemeinsamem Pluspol, Aufbau, Isoliergehäuse, abged. Skala, Skalenbild 59/4, isolierte Nullstellenschraube, Abdeckring Nr. 9200, Gr. 2, mit Glas</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>Spannungsmesser</td>
<td>Gossen Paut 2 v</td>
<td>0—500 V, Drehspulgerät, mit eingebautem Vorwiderstand, Aufbau, Isolierstößgehäuse, abgedeckte Skala, Skalenbild 59/5, isolierte Nullstellenschraube, Abdeckring Nr. 9200, mit Glas</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>Spannungsmesser</td>
<td>Gossen Paut 2 vv</td>
<td>0—1500/3000 V, Drehspulgerät, mit getrennten Vorwiderständen, die auf gemeinsamer von Lorenz anzuliefernder Platte Sk 549043/1 zu montieren sind, Aufbau, Isoliergehäuse, abgedeckte Skala, Skalenbild 599/6, isolierte Nullstellenschraube, Abdeckring Nr. 9200, Gr. 2, mit Glas</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>Umschalter</td>
<td>Sk 600 220</td>
<td>Vorwiderstand für 1500 V zu Teil 3</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>Umschalter</td>
<td>Sk 600 220</td>
<td>Vorwiderstand für 3000 V zu Teil 3</td>
<td>1</td>
</tr>
<tr>
<td>6</td>
<td>Spannungsteiler-Widerstand</td>
<td>Gossen</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>7</td>
<td>Spannungsteiler-Widerstand</td>
<td>Gossen</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>8</td>
<td>Drehstrom-Einphasen-Mittelfrequenz-Umformer</td>
<td>Sk 777 123/1</td>
<td>Primär: 400 Wdg. 0,3 Cu S5 Sekundär: 1600 Wdg. 0,25 Cu S5 2500 Ω, 69 mA, linear, mit Kappe, ohne Knopf</td>
<td>1</td>
</tr>
<tr>
<td>9</td>
<td>Tonfrequenz-Transformator</td>
<td>Görler Zi. 30</td>
<td>1000 Q, 0,2 Amp., 150 x 30 mm Ω, mit Abgreiffedelle, noch DTV 18 und 19 0,4—0,7 Amp.</td>
<td>1</td>
</tr>
<tr>
<td>10</td>
<td>Drehspannungsteiler</td>
<td>Preh, Type Sonitus III D Nr. 6460</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>11</td>
<td>Relais</td>
<td>RBvT 10 034</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>12</td>
<td>Widerstand</td>
<td>Reichardt</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>13</td>
<td>Motorschutzschalter</td>
<td>V. & H. 10 III KMik Nr. 52 471</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>14</td>
<td>Kippschalter</td>
<td>Sk 600 220</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>15</td>
<td>wie Teil 14</td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>16</td>
<td>Buchsenplatte</td>
<td>Sk 574 920/III</td>
<td>2polig, gravieren nach Sk 512 505</td>
<td>1</td>
</tr>
<tr>
<td>17</td>
<td>frei</td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>18</td>
<td>Kontrollampe</td>
<td>Rafl 963/s</td>
<td>24 V, mit grüner Flachscheibe</td>
<td>1</td>
</tr>
<tr>
<td>19</td>
<td>frei</td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>20</td>
<td>Walzenschalter</td>
<td>Sk 1 500 381</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>21</td>
<td>frei</td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>22</td>
<td>Relaisanordnung</td>
<td>ZO 2012</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Pos.</td>
<td>Benennung</td>
<td>Zeichnungs-Nr. a/Stückliste b</td>
<td>Elektrische Werte</td>
<td>Stück</td>
</tr>
<tr>
<td>------</td>
<td>-------------------------</td>
<td>-----------------------------</td>
<td>--</td>
<td>-------</td>
</tr>
<tr>
<td>23</td>
<td>Spannungsmesser</td>
<td>Gossen Paut 2 v</td>
<td>0—10/30 V, Drehisengerät, mit getrenntem Vorwiderstand, für 30 V, Einbau, Metallgehäuse Nr. 8525, Skalenbild 599/1, isolierte Nullstellenschraube</td>
<td>1</td>
</tr>
<tr>
<td>23a</td>
<td>Vorwiderstand</td>
<td>Gossen</td>
<td>für 30 V, gehört zu Teil 23</td>
<td>1</td>
</tr>
<tr>
<td>24</td>
<td>Strommesser</td>
<td>Gossen Paut 2 a</td>
<td>0—20 Amp., Drehisengerät, Einbau, Metallgehäuse Nr. 8794, Skalenbild 599/3, isolierte Nullstellenschraube</td>
<td>1</td>
</tr>
<tr>
<td>25</td>
<td>Spannungsmesser</td>
<td>Gossen Paut 2 v</td>
<td>0—500 V, Drehisengerät, mit getrenntem Vorwiderstand, Einbau, Metallgehäuse Nr. 8525, Skalenbild 599/2, isolierte Nullstellenschraube</td>
<td>1</td>
</tr>
<tr>
<td>25a</td>
<td>Vorwiderstand</td>
<td>Gossen</td>
<td>für 500 V, gehört zu Teil 25</td>
<td>1</td>
</tr>
<tr>
<td>26</td>
<td>Ventilator</td>
<td>Maico EWS 30/4 k</td>
<td>220 V, 50 Hz, Einphasenmotor mit Kurzschlußanker</td>
<td>1</td>
</tr>
<tr>
<td>27</td>
<td>Paketschalter</td>
<td>Sk 588 622</td>
<td>gravieren nach Sk 1 640 360</td>
<td>1</td>
</tr>
<tr>
<td>28</td>
<td>Motorschutzschalter</td>
<td>Sk 1 520 961/I</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>29</td>
<td>Kellgeschalter</td>
<td>Sk 7741, Ausführung 2</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>30</td>
<td>Paketschalter</td>
<td>Sk 588 612</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>31</td>
<td>Steckdose</td>
<td>Sk 765 193, Ausf. II</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>32</td>
<td>frei</td>
<td></td>
<td>Verwendet in V-Schaltung, tropfenfeste Ausführung</td>
<td>2</td>
</tr>
<tr>
<td>33</td>
<td>frei</td>
<td></td>
<td>tropfenfeste Ausführung</td>
<td>1</td>
</tr>
<tr>
<td>34</td>
<td>Heiztransformator</td>
<td>ZV 50</td>
<td>Verwendet in V-Schaltung, tropfenfeste Ausführung</td>
<td>2</td>
</tr>
<tr>
<td>35</td>
<td>Heiztransformator</td>
<td>Sk 873 580, n. BV 573</td>
<td>tropfenfeste Ausführung</td>
<td>1</td>
</tr>
<tr>
<td>36</td>
<td>Motorschutzschalter</td>
<td>Sk 1 520 961/II</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>37</td>
<td>Kontroll-Lampe</td>
<td>Raffi 963/s</td>
<td>24 V, mit matter Flachscheibe</td>
<td>1</td>
</tr>
<tr>
<td>38</td>
<td>Gerätestecker</td>
<td>V. & H. 024 b St 3920</td>
<td>1 A, 220/380 V, J edoch ohne Deckel</td>
<td>1</td>
</tr>
<tr>
<td>39</td>
<td>frei</td>
<td></td>
<td>Schema 190 144</td>
<td>1</td>
</tr>
<tr>
<td>40</td>
<td>Umschalter</td>
<td>V. & H. 10 Pz. II 3</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>
Netzanschlußgerät S GI D 1,9/5 mit Pintsch-Regler
für AS 4

<table>
<thead>
<tr>
<th>Pos.</th>
<th>Benennung</th>
<th>Zeichnungs-Nr. a</th>
<th>Stückliste b</th>
<th>Elektrische Werte</th>
<th>Stück</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Automat für 380 Volt-Netz</td>
<td>10 III KMtk V. & H.</td>
<td>10 III KMtk V. & H.</td>
<td>6—10 Amp., einstellbar</td>
<td>1</td>
</tr>
<tr>
<td>1a</td>
<td>Schutzwiderstand zu 1</td>
<td>C. L. O 3359</td>
<td>3359</td>
<td>Konstanton N 3511/1, 0,5 Ω, 2//6—10 Amp., durch Schützung der Heizspiralen einstellbar von ca. 6—13 A</td>
<td>4</td>
</tr>
<tr>
<td>2</td>
<td>Automat für 220 Volt-Netz</td>
<td>C. L. O 3359</td>
<td>3359</td>
<td>Konstanton N 3511/1, 0,5 Ω, 3//6—10 Amp., durch Schützung der Heizspiralen einstellbar von ca. 8—13 A</td>
<td>1</td>
</tr>
<tr>
<td>2a</td>
<td>Sperrwiderstand zu 2</td>
<td>C. L. O 3359</td>
<td>3359</td>
<td>0//114/127/140/180/220/242 V, 220 Volt, 10 Amp., Entnahme</td>
<td>6</td>
</tr>
<tr>
<td>3</td>
<td>Spartrafo</td>
<td>Kalinke</td>
<td>Sk 864 601</td>
<td>220 Volt, 50 Hz, Einphasenmotor mit Kurzschlußanker und Kugellager</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>Ventilator</td>
<td>Kalinke</td>
<td>Sk 873 560</td>
<td>8 Amp., mit Widerstand Pos. 66</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>Kohlerdämmregler</td>
<td>Maico EWS 30/4 K</td>
<td>Ausführung A</td>
<td>13 Ω, ca. 1,8 A, mit einer Abgriffsscheibe</td>
<td>1</td>
</tr>
<tr>
<td>5a</td>
<td>Vorwiderstand zu 5</td>
<td>Pintsch 58/16.12</td>
<td>Reo</td>
<td>2,3 Ω, ca. 1,8 A, mit einer Abgriffsscheibe</td>
<td>1</td>
</tr>
<tr>
<td>5b</td>
<td>Vorwiderstand zu 5</td>
<td>120×40, noch</td>
<td>Sk 893 869</td>
<td>0,25—0,4 Amp.</td>
<td>1</td>
</tr>
<tr>
<td>6</td>
<td>Automat für 30 Volt-Kreis</td>
<td>V. & H. 10 III KMtk</td>
<td>Kalinke Sk 864 430</td>
<td>Primär, 220 Volt, 50 Hz</td>
<td>1</td>
</tr>
<tr>
<td>7</td>
<td>Eliphasenträfo für 30 Volt-Kreis</td>
<td>SAF V 5402</td>
<td>Sk 864 440</td>
<td>Sekundär: 0/2/4/32/38 Volt, 0,4 Amp., Dauerstrom</td>
<td>1</td>
</tr>
<tr>
<td>8</td>
<td>Selenelkement für 30 Volt-Kreis</td>
<td>Kalinke Sk 864 450</td>
<td>Jahre</td>
<td>Einphasen-Graetz, 4×6 Pl., 3 Pl. in Reihe, 2 Pl. parallel, mit Winkeln</td>
<td>1</td>
</tr>
<tr>
<td>9</td>
<td>Eisendrossel zu 8</td>
<td>Kalinke Sk 864 450</td>
<td>Jahre</td>
<td>0,5 Hz, 0,5 Amp., 5 Ω</td>
<td>1</td>
</tr>
<tr>
<td>10</td>
<td>Kondensator</td>
<td>Kalinke Sk 864 440</td>
<td>Jahre</td>
<td>Jahrel-V-Kondensator, 100 μF, 20×110, 50/60 V, −40° C/+50° C, in Aluminiumrohrgehäuse</td>
<td>1</td>
</tr>
<tr>
<td>11</td>
<td>Widerstand</td>
<td>C. L. O 3484</td>
<td>Wickeliste N 2241/n</td>
<td>300 Ω, mit Regelscheibe</td>
<td>1</td>
</tr>
<tr>
<td>12</td>
<td>Automat für 100 Volt-Kreis</td>
<td>Wickeliste N 2241/n</td>
<td>V. & H. 10 III KMtk</td>
<td>0,25—0,4 Amp.</td>
<td>1</td>
</tr>
<tr>
<td>13</td>
<td>Drehstromtrafo zum 100 Volt-Kreis</td>
<td>Kalinke</td>
<td>Sk 864 460</td>
<td>Primär: 220 V, 50 Hz, Dreileck</td>
<td>1</td>
</tr>
<tr>
<td>13a</td>
<td>Schutzwiderstand zu 12</td>
<td>Rosenthal HLW 15</td>
<td>SAF V 5403</td>
<td>Sekundär: 0/2/4/44/52 V, Phase, 0,5 A, Phasenstrom, Stern</td>
<td>2</td>
</tr>
<tr>
<td>14</td>
<td>Selenelmentsatz zu 13</td>
<td>SAF V 5403</td>
<td>Sk 864 470</td>
<td>40 Ω</td>
<td>1</td>
</tr>
<tr>
<td>15</td>
<td>Eisendrossel</td>
<td>Kalinke Sk 864 480</td>
<td>Hydra-Nr. 4122</td>
<td>Dreiphasen-Graetz, 6×7 Pl., 45° 2, 7 Pl. in Reihe, 2 Elemente mit Winkeln</td>
<td>1</td>
</tr>
<tr>
<td>16</td>
<td>Kondensator</td>
<td>Kalinke Sk 864 480</td>
<td>Hydra-Nr. 4122</td>
<td>2 Hz, 0,6 A, Dauerstrom, 6 Ω</td>
<td>1</td>
</tr>
<tr>
<td>17</td>
<td>Kondensator</td>
<td>Hydra-Nr. 4122</td>
<td>10 μF, 250 V Betriebsspannung, allseitig verloht, 70° C</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>Schütz</td>
<td>BBC, SL 15, 3polig, 220 V-Spule</td>
<td>BBC, SL 15, 3polig, 220 V-Spule</td>
<td>10 μF, 250 V Betriebsspannung, allseitig verloht, 70° C</td>
<td>1</td>
</tr>
<tr>
<td>19</td>
<td>Röhre</td>
<td>Telefunken RS 289/VI</td>
<td>C. L. RBv T 10 030</td>
<td>mit einem Ruhehilfkontakt, Kontakte aus Silber für Europasockel aus Kalt</td>
<td>1</td>
</tr>
<tr>
<td>20</td>
<td>Relais</td>
<td>C. L. RBv T 10 030</td>
<td>0,7—1,2 A einstellbar</td>
<td>für Europasockel aus Kalt</td>
<td>1</td>
</tr>
<tr>
<td>21</td>
<td>Automat zum 400 Volt-Kreis</td>
<td>Kalinke Sk 864 490</td>
<td>Hydra-Nr. 4122</td>
<td>0,7—1,2 A einstellbar</td>
<td>1</td>
</tr>
<tr>
<td>22</td>
<td>Eliphasenträfo für 400 Volt-Kreis</td>
<td>Kalinke Sk 864 490</td>
<td>Hydra-Nr. 4122</td>
<td>Primär: 220 V, 50 Hz</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Sekundär: 0/17/35/490/520/570 V, 0,34 A DB</td>
<td>1</td>
</tr>
<tr>
<td>Pos.</td>
<td>Benennung</td>
<td>Zeichnungs-Nr. a</td>
<td>Elektrische Werte</td>
<td>Stück</td>
<td></td>
</tr>
<tr>
<td>-----</td>
<td>---</td>
<td>-----------------</td>
<td>--</td>
<td>-------</td>
<td></td>
</tr>
<tr>
<td>22a</td>
<td>Schutzwiderstand zu 21</td>
<td>C. L. O 3359</td>
<td>Konstantan N 3511/0, 2,6 Ω</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>Selenelementsatz</td>
<td>SAF Sk 864 500</td>
<td>Einphasen-Graetzschaltung, 6 Elemente à 22 P., 35 Ø, mit freien Achssenden</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>Drossel</td>
<td>Kalinke Sk 864 510</td>
<td>3 Hy, 0,3 A, 12 Ω</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>24a</td>
<td>Drossel</td>
<td>Kalinke Sk 864 510</td>
<td>3 Hy, 0,3 A, 12 Ω</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>Kondensator</td>
<td>Baugatz Sk 869 210</td>
<td>10 μF, 650 V Betriebsspannung</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>25a</td>
<td>Kondensator</td>
<td>Baugatz Sk 869 210</td>
<td>10 μF, 650 V Betriebsspannung</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>Kondensator</td>
<td>Baugatz Sk 869 210</td>
<td>10 μF, 650 V Betriebsspannung</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>26a</td>
<td>Widerstand</td>
<td>C. L. O 3361</td>
<td>1300 V Prüfspannung, 300 Ω, 0,2 Ø, Konst. 330 Wdg.</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>frei</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>29</td>
<td>frei</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>frei</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>31</td>
<td>Relais</td>
<td>C. L. RBV 1 505 821</td>
<td>2000 Ω, 20 Watt</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>32</td>
<td>Widerstand</td>
<td>Reichardt 110×20 Ø</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>m. 2 Abgriffsschellen</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>33</td>
<td>frei</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>34</td>
<td>frei</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>35</td>
<td>frei</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>36</td>
<td>Relais</td>
<td>C. L. RBvT 10 033</td>
<td></td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>37</td>
<td>Relais</td>
<td>C. L. RBv 6840</td>
<td></td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>38</td>
<td>Widerstand</td>
<td>Reichardt Nr. 176 149</td>
<td>1 Ω, 6,2 Amp.</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>39</td>
<td>Widerstand</td>
<td>Reichardt 120×20 Ø</td>
<td>12 000 Ω, 10 Watt</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>m. 2 Abgriffsschellen</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>40</td>
<td>Automat</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>41</td>
<td>Einphasentrafo</td>
<td>V. & H. 10 III KMkV</td>
<td>2—3,5 Amp. einstellbar</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>für 1000 Volt-Kreis</td>
<td>Sk 864 520</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>41a</td>
<td>Schutzwiderstand</td>
<td>C. L. O 3359</td>
<td></td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>42</td>
<td>Selenelementsatz für 1000 Volt-Kreis</td>
<td>SAF Sk 864 530</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>43a</td>
<td>Eisendrüssel</td>
<td>Kalinke Sk 864 540</td>
<td>3,5 Hy, 0,3 A, 25 Ø</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>44</td>
<td>Kondensator</td>
<td>Baugatz Sk 869 220</td>
<td>6 μF, 1500 V Betriebsspannung, 4500 V Prüfspannung (wie RM/HC 10/17)</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>44a</td>
<td>Widerstand</td>
<td>C. L. O 3361</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>45</td>
<td>Kondensator</td>
<td>Baugatz Sk 869 220</td>
<td>6 μF, 1500 V Betriebsspannung, 4500 V Prüfspannung (wie RM/HC 10/17)</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>45a</td>
<td>Kondensator</td>
<td>Baugatz Sk 869 220</td>
<td>6 μF, 1500 V Betriebsspannung</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>46</td>
<td>Automat</td>
<td>V. & H. 10 III KMkV</td>
<td>3,5—6 Amp.</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>47</td>
<td>Drehstromtrafo für 2000 Volt-Kreis</td>
<td>Kalinke Sk 864 560</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>47a</td>
<td>Schutzwiderstand zu 46</td>
<td>C. L. O 3359</td>
<td></td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>48</td>
<td>Selenelementsatz</td>
<td>Sk 864 570</td>
<td></td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>49</td>
<td>Eisendrosseln</td>
<td>Kalinke Sk 864 580</td>
<td>3,5 Hy, 0,7 A, 20 Ω</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Pos.</td>
<td>Benennung</td>
<td>Zeichnungs-Nr. a Stckliste b</td>
<td>Elektrische Werte</td>
<td>Stück</td>
<td></td>
</tr>
<tr>
<td>------</td>
<td>---------------------------------</td>
<td>------------------------------</td>
<td>---</td>
<td>-------</td>
<td></td>
</tr>
<tr>
<td>50</td>
<td>Kondensator</td>
<td>Telegrafia Hydra U 71 238</td>
<td>2 (\mu)F, 4000 V Betriebsspannung, 12 kV Prüfspannung</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>51</td>
<td>frei</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>52</td>
<td>frei</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>53</td>
<td>frei</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>54</td>
<td>Gleichrichter zu Pos. 5</td>
<td>Sk 871 120</td>
<td>2,4 A, 16 V, 45 (\Omega) Platten, 4 parallel, 1 Reihe</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>55</td>
<td>Kondensator zu Pos. 4</td>
<td>Bosch RM/HC 7/2</td>
<td>2 (\mu)F, 650/1300 V</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>56</td>
<td>Steckdose</td>
<td>C. L. Sk 765/223/1V</td>
<td>Ist in Stückliste Sk 756 456 enthalten, Kabel mit Steckern Sk 772 814.</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>57</td>
<td>Pintschregler</td>
<td>V. & H. Typ 10 P 4</td>
<td>10 A</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>58</td>
<td>Umschalter</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>59</td>
<td>Widerstand</td>
<td>Rosenthal HLW 35/2</td>
<td>1 k(\Omega)</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>60</td>
<td>frei</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>61</td>
<td>Vorlastwiderstand</td>
<td>Rosenthal HLW 125/1</td>
<td>3000 (\Omega)</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>62</td>
<td>frei</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>63</td>
<td>frei</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>64</td>
<td>frei</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>65</td>
<td>frei</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>66</td>
<td>Shuntwiderstand zu 5</td>
<td>Reo-Rohr 120 x 40, Sk 893 670</td>
<td>20 (\Omega), 2 A ca., mit Abgriffschelle</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>
Vorschauplan des Anflugführersenders AS 4

Netzteil

Verbindungs-Kabel n.SK772814

Fahrband 500W-Anlage AFFA 2
nach St.512093

Netzanschlussgerät
Stückliste
nach St.751083
Schaltbild
nach St.753982
Anl. 2: Stromlaufplan des Netzanschlusses
Kupferdrahtnetzanschlußgerätes